
Netcool/Impact
Version 6.1.1.5

Operator View Guide

SC27-4853-01

IBM

Netcool/Impact
Version 6.1.1.5

Operator View Guide

SC27-4853-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices”.

Edition notice

This edition applies to version 6.1.1.5 of IBM Tivoli Netcool/Impact and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Operator View Guide v
Intended audience v
Publications v

Netcool/Impact library v
Accessing terminology online. v
Accessing publications online vi
Ordering publications vi

Accessibility vi
Tivoli technical training vi
Support for problem solving vii

Obtaining fixes vii
Receiving weekly support updates vii
Contacting IBM Software Support viii

Conventions used in this publication x
Typeface conventions x
Operating system-dependent variables and paths x

Chapter 1. Introduction to operator
views 1
Operator views 1

Operator view types 1
Setting up an operator view 8
Managing an operator view 8
Operator view process 8

Chapter 2. Working with operator views 9
Working with basic operator views 9

Operator view name. 9
Layout options 9
Action panel policies 10
Information groups 10
Creating a basic operator view 10
Manually editing basic operator view
components 11
Viewing operator views 12
Editing operator views 13
Deleting operator views 13

Working with advanced operator views 14
Creating the operator view policy 14
Creating the display page 15

Customizing operator view displays index page . . 17
Customizing the index page using CSS
definitions 18
Customizing the index page using .meta files . . 18
Properties used in .meta files 19
Customizing the index page using index URL . . 20
Passing a cluster with the index page. 20
Passing an alternate stylesheet with the index
page 21

Viewing an operator view page in the Tivoli
Integrated Portal. 21

Selecting the operator view URL 21
Creating a custom operator view portlet 21
Creating the custom operator view page. . . . 22

Sending data from a charting table to an operator
view. 23

Chapter 3. Working with smart tags . . 27
Smart tags overview 27
Smart tag syntax. 27

White space 28
Escape characters 28
Common attributes 29
Overriding attributes 29
Indexed attributes 29

Chapter 4. Working with basic smart
tags 35
Property tag 35
Event panel tag 36
Action panel tag 36
Information groups panel tag 37

Chapter 5. Working with advanced
smart tags 39
Scalar tag 39
List tag 41
OrgNodes tag 44
Attributes used in advanced smart tags 47

action_align attribute 47
action_class attribute 49
action_count attribute 51
action_disabled attribute 52
action_fieldparams attribute 53
action_hide attribute 54
action_hiderow attribute 55
action_isbutton attribute 56
action_label attribute 57
action_policy attribute 59
action_style attribute 60
action_target attribute 62
action_url attribute 62
action_varparams attribute 64
aliases attribute 66
autourl attribute 67
cacheread attribute 69
cachewrite attribute. 69
cellclass attribute 70
cellstyle attribute used in list tag 75
cellstyle attribute used in orgnodes tag 77
class attribute. 81
default attribute 83
delimiter attribute 84
excludes attribute 85
grouping attribute 86
headerclass attribute 87
headerstyle attribute 90
id attribute 94
includes attribute 96

© Copyright IBM Corp. 2006, 2014 iii

isbutton attribute 97
label_align attribute 99
label_class attribute 100
label_show attribute 100
label_style attribute 101
label_text attribute. 101
orientation attribute used in list tag 102
orientation attribute used in orgnodes tag . . . 103
params attribute 103
policy attribute 107
reversepair attribute 109
rowcellclass attribute 110
rowcellstyle attribute 111
rowcelltext attribute 112
rowclass attribute 113
rowstyle attribute 116
showheader attribute 118
spaceheight attribute 119
spacewidth attribute 120
style attribute 121
target attribute 123
title attribute 125
url attribute 127
update_delay attribute 128
update_effect attribute 129
update_interval attribute 131
update_label attribute 131
update_option attribute 132
update_params attribute. 133
update_policy attribute 134
update_precall and update_postcall attributes 135
update_tags and *_override_tags attribute . . . 136

var, type, and format attributes 137

Appendix A. Accessibility 139

Appendix B. Notices 141
Trademarks 143

Glossary 145
A 145
B 145
C 145
D 145
E 146
F 147
G 147
H 147
I. 147
J. 148
K 148
L 148
M 149
N 149
O 149
P 149
S 149
U 151
V 151
W 151
X 151

Index 153

iv Netcool/Impact: Operator View Guide

Operator View Guide

The Netcool/Impact Operator View Guide contains instructions on creating operator
views.

Intended audience
This publication is for users who are responsible for creating operator views.

Publications
This section lists publications in the Netcool/Impact library and related
documents. The section also describes how to access Tivoli® publications online
and how to order Tivoli publications.

Netcool/Impact library
v Quick Start Guide, CF39PML

Provides concise information about installing and running Netcool/Impact for
the first time.

v Administration Guide, SC14755901
Provides information about installing, running and monitoring the product.

v User Interface Guide, SC27485101
Provides instructions for using the Graphical User Interface (GUI).

v Policy Reference Guide, SC14756101
Contains complete description and reference information for the Impact Policy
Language (IPL).

v DSA Reference Guide, SC27485201
Provides information about data source adaptors (DSAs).

v Operator View Guide, SC27485301
Provides information about creating operator views.

v Solutions Guide, SC14756001
Provides end-to-end information about using features of Netcool/Impact.

v Integrations Guide, SC27485401
Contains instructions for integrating Netcool/Impact with other IBM® software
and other vendor software.

v Troubleshooting Guide, GC27485501
Provides information about troubleshooting the installation, customization,
starting, and maintaining Netcool/Impact.

Accessing terminology online
The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

© Copyright IBM Corp. 2006, 2014 v

http://www.ibm.com/software/globalization/terminology

Accessing publications online
Publications are available from the following locations:
v The Quick Start DVD contains the Quick Start Guide. Refer to the readme file on

the DVD for instructions on how to access the documentation.
v Tivoli Information Center web site at http://publib.boulder.ibm.com/infocenter/

tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html. IBM posts
publications for all Tivoli products, as they become available and whenever they
are updated to the Tivoli Information Center Web site.

Note: If you print PDF documents on paper other than letter-sized paper, set
the option in the File → Print window that allows Adobe Reader to print
letter-sized pages on your local paper.

v Tivoli Documentation Central at http://www.ibm.com/tivoli/documentation.
You can access publications of the previous and current versions of
Netcool/Impact from Tivoli Documentation Central.

v The Netcool/Impact wiki contains additional short documents and additional
information and is available at https://www.ibm.com/developerworks/
mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact.

Ordering publications
You can order many Tivoli publications online at http://
www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site in the main panel to see an information page that

includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see Appendix A, “Accessibility,” on page 139.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

vi Netcool/Impact: Operator View Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html
http://www.ibm.com/tivoli/documentation
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education

Support for problem solving
If you have a problem with your IBM software, you want to resolve it quickly. This
section describes the following options for obtaining support for IBM software
products:
v “Obtaining fixes”
v “Receiving weekly support updates”
v “Contacting IBM Software Support” on page viii

Obtaining fixes
A product fix might be available to resolve your problem. To determine which
fixes are available for your Tivoli software product, follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Navigate to the Downloads page.
3. Follow the instructions to locate the fix you want to download.
4. If there is no Download heading for your product, supply a search term, error

code, or APAR number in the search field.

For more information about the types of fixes that are available, see the IBM
Software Support Handbook at http://www14.software.ibm.com/webapp/set2/sas/
f/handbook/home.html.

Receiving weekly support updates
To receive weekly e-mail notifications about fixes and other software support news,
follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Click the My IBM in the toobar. Click My technical support.
3. If you have already registered for My technical support, sign in and skip to

the next step. If you have not registered, click register now. Complete the
registration form using your e-mail address as your IBM ID and click Submit.

4. The Edit profile tab is displayed.
5. In the first list under Products, select Software. In the second list, select a

product category (for example, Systems and Asset Management). In the third
list, select a product sub-category (for example, Application Performance &
Availability or Systems Performance). A list of applicable products is
displayed.

6. Select the products for which you want to receive updates.
7. Click Add products.
8. After selecting all products that are of interest to you, click Subscribe to email

on the Edit profile tab.
9. In the Documents list, select Software.

10. Select Please send these documents by weekly email.
11. Update your e-mail address as needed.
12. Select the types of documents you want to receive.
13. Click Update.

If you experience problems with the My technical support feature, you can obtain
help in one of the following ways:

Operator View Guide vii

http://www.ibm.com/software/support
http://www.ibm.com/software/support
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/support
http://www.ibm.com/software/support

Online
Send an e-mail message to erchelp@u.ibm.com, describing your problem.

By phone
Call 1-800-IBM-4You (1-800-426-4409).

World Wide Registration Help desk
For word wide support information check the details in the following link:
https://www.ibm.com/account/profile/us?page=reghelpdesk

Contacting IBM Software Support
Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM. The type of software maintenance contract that you need depends on the
type of product you have:
v For IBM distributed software products (including, but not limited to, Tivoli,

Lotus®, and Rational® products, and DB2® and WebSphere® products that run on
Windows or UNIX operating systems), enroll in Passport Advantage® in one of
the following ways:

Online
Go to the Passport Advantage Web site at http://www-306.ibm.com/
software/howtobuy/passportadvantage/pao_customers.htm .

By phone
For the phone number to call in your country, go to the IBM Worldwide
IBM Registration Helpdesk Web site at https://www.ibm.com/account/
profile/us?page=reghelpdesk.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at https://techsupport.services.ibm.com/ssr/
login.

v For customers with IBMLink, CATIA, Linux, OS/390®, iSeries, pSeries, zSeries,
and other support agreements, go to the IBM Support Line Web site at
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the contacts page of the IBM Software Support Handbook on the Web at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html and
click the name of your geographic region for phone numbers of people who
provide support for your location.

To contact IBM Software support, follow these steps:
1. “Determining the business impact” on page ix
2. “Describing problems and gathering information” on page ix
3. “Submitting problems” on page ix

viii Netcool/Impact: Operator View Guide

https://www.ibm.com/account/profile/us?page=reghelpdesk
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006
http://www.ibm.com/servers/eserver/techsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level. Use
the following criteria to understand and assess the business impact of the problem
that you are reporting:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little impact
on operations, or a reasonable circumvention to the problem was
implemented.

Describing problems and gathering information
When describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently. To save time, know the answers to these questions:
v Which software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you make any changes to the system? For example, did you make changes

to the hardware, operating system, networking software, and so on.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submitting problems
You can submit your problem to IBM Software Support in one of two ways:

Online
Click Submit and track problems on the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html. Type your
information into the appropriate problem submission form.

By phone
For the phone number to call in your country, go to the contacts page of
the IBM Software Support Handbook at http://www14.software.ibm.com/
webapp/set2/sas/f/handbook/home.html and click the name of your
geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support creates an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support provides a workaround that you can implement until the
APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the
Software Support Web site daily, so that other users who experience the same
problem can benefit from the same resolution.

Operator View Guide ix

http://www.ibm.com/software/support/probsub.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

x Netcool/Impact: Operator View Guide

Chapter 1. Introduction to operator views

An operator view is a custom Web-based tool that you use to view events and data
in real time and to run policies that are based on that data.

Operator views
An operator view is a custom web-based tool that you use to view events and data
in real time and to run policies that are based on that data.

The simplest operator views present a basic display of event and business data.
More complex operator views can function as individual GUIs that you use to
view and interact with event and business data in a wide variety of ways. You can
use this kind of GUI to extensively customize an implementation of
Netcool/Impact products and other Tivoli Monitoring applications.

Typically, you create operator views to:
v Accept incoming event data from Netcool®/OMNIbus or another application.
v Run a policy that correlates the event data with business data that is stored in

your environment.
v Display the correlated business data to a user.
v Run one or more policies based on the event or business data.
v Start another operator view based on the event or business data.

One common way to use an operator view is to configure it to be started from
within the Netcool/OMNIbus event list. Netcool/Impact operators can view
related business data for an event by right-clicking the event in the event list and
viewing the data as displayed in the view. The business data might include service,
system, or device information related to the event, or contact information for
administrators and customers that are affected by it.

Operator views are not limited to use as Netcool/OMNIbus tools. You can use the
operator view feature to create a wide variety of tools that display event and
business data to users.

Operator view types
Basic and advanced operator views are supported.
v Basic operator views that you use to display data in a preformatted web page.

For more information about basic operator views, see “Basic operator views.”
v Advanced operator views that you use to display data using any HTML

formatting that you choose. For more information about advanced operator
views, see “Advanced operator views” on page 2.

Basic operator views
You use basic operator views to view real-time data in a preformatted web page
and to run policies based on that data.

A basic operator view has the following display elements:

© Copyright IBM Corp. 2006, 2014 1

Event panel
Displays incoming event information from Netcool/OMNIbus or
information from another application that can be expressed in name/value
pairs.

Actions panel
You use it to run one or more policies from within the operator view.

Information groups panel
Displays sets of data that you define when you create the view, or when
you manually edit the operator view policy.

You create basic operator views using the GUI. The GUI automatically creates the
corresponding display page and operator view policy.

If you need to customize the appearance of the view or the type of information
displayed in the information group panel, you can manually edit the display page
using a text editor. You can edit the operator view policy using the GUI.

Advanced operator views
You use advanced operator views to view real-time data in an HTML-formatted
web page and to run policies based on that data.

Unlike basic operator views, which must use the provided preformatted page
design, advanced operator views have no restrictions on the appearance of the
resulting web page.

You can use any type of HTML formatting to specify how an advanced operator
view is displayed and you can display data in an advanced view in any format
that is viewable using a web browser. You can also further customize advanced
operator views using cascading styles sheets (CSS) and browser scripting
languages.

For detailed information about how to create and view advanced operator views,
see the Operator View Guide.

Operator view components
An overview of the operator view components.

Display page
Text file that contains HTML content and special instructions called smart
tags that determine what data to display and how to display it.

Operator view policy
Policy that contains the logic required to retrieve and manipulate the data
displayed in the view.

Operator view policy: The operator view policy is a policy that contains the logic
required to retrieve and manipulate the data that is displayed in the view. This
policy is named Opview_viewname, where viewname is the name of the operator
view. There is one such policy for each operator view. When a request to display
an operator view is handled, a corresponding policy is run.

The content of the operator view policy differs, depending on whether it is
associated with a basic view or an advanced view.

Basic operator view policies: Basic operator view policies consist of the following
elements:

2 Netcool/Impact: Operator View Guide

v Variable assignments that specify the position of the event panel and action
panel.

v Variable assignments that specify which policies are displayed in the action
panel.

v One GetByFilter or GetByKey statement for each information group.

When you create a basic operator view using the GUI, the GUI automatically
creates a corresponding policy that contains all the required content. If necessary,
you can manually edit the policy after it is created. For more information about
editing operator view policies, see “Editing the operator view policy” on page 12.

The following example shows a policy that works with a basic operator view:
// This policy generated by Impact Operator View.
// Modify at your own risk!
// Once modified, this policy may no longer be configurable
// through the Impact Operator View GUI.

// LAYOUT PANEL
EventPos="top";
ActionPos="top";

// ACTION PANEL
ActionPanel0="Policy_03";
ActionPanel1="Policy_02";
ActionPanel2="Policy_01";

// INFO PANEL
InfoPanelAdmins=GetByFilter("ADMIN","1=1",null);
InfoPanelAdmins_style="table";

In this example, you use the action panel in the operator view to trigger three
policies, named Policy_01, Policy_02 and Policy_03. It also contains an
information group named InfoPanelAdmins that displays the data items that are
returned from the ADMIN data type by a call to the GetByFilter function.

Advanced operator view policies: Advanced operator view policies consist of a set of
statements that assign values to variables in the policy context. The data in these
values is inserted into the operator view when the GUI Server filters the
corresponding display page.

When you create an advanced operator view, you must manually create the
operator view policy as a separate step using the GUI or a text editor. For more
information about creating operator view policies, see “Creating the operator view
policy” on page 14.

The following example shows a policy that works with an advanced operator
view:
// Retrieve summary information about the node where an incoming event
// was reported, where @Node is an event field passed to the operator view
// using the URL syntax

DataType = "Host";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

Hosts = GetByFilter(DataType, Filter, CountOnly);

// Retrieve geographical information about the node from the
// Contacts data type

Chapter 1. Introduction to operator views 3

DataType = "Admins";
Filter = "Facility = ’" + Nodes[0].Facility + "’";
CountOnly = False;

Contacts = GetByFilter(DataType, Filter, CountOnly);

In this example, the policy retrieves information about the node from the Host data
type and stores this information in a variable named Hosts. Then, it retrieves
contact information for the administrator who is responsible for managing systems
in the facility where the node is located and stores this information in the Contacts
data item array. When the GUI Server filters the display page for the view, it can
insert the value of any of these variables into the resulting operator view Web
page.

Display pages:

A display page is a text file that contains HTML content and special instructions
called smart tags. Smart tags determine what data to display in the operator view
and how to display it.

Display pages are named clustername-viewname.html, where clustername is the
name of the server cluster and viewname is the name of the operator view. These
pages are located in the $IMPACT_HOME/opview/displays directory. There is one
display page for each operator view.

If you create a new cluster and want the operator views to be available for that
cluster, choose one of the following options:
v Copy the appropriate opview.html files in to the new cluster name
v Use the installAddOnOpview.xml command with the following format

nc_ant -f installAddOnOpview.xml NewCluster -DCLUSTERNAME=<NewClusterName>

Remember: This command overwrites any html files that are already there. Do
not execute this command if you do not want to copy all the existing operator
view from NCICLUSTER to the new cluster.

Display pages are similar to JSP pages or other types of HTML templates that are
interpreted in real time by a Web server, to insert dynamic data obtained from a
database or other data source. The HTML content in a display page is returned to
the user's Web browser unaltered. Smart tags in the display page are filtered and
evaluated by the GUI Server at runtime. For more information about smart tags,
see Chapter 3, “Working with smart tags,” on page 27.

The content of a display page depends on whether it is associated with a basic
operator view or an advanced operator view.

Basic display pages:

A basic display page contains sections of HTML markup that specify how the Web
browser renders the event panel, action panel, and information groups panel that
is displayed in the operator view. The page also contains embedded smart tags
that specify the data that is displayed in the view and how it is displayed.

When you create a basic operator view using the GUI, the GUI automatically
creates a basic display page.

4 Netcool/Impact: Operator View Guide

You can manually modify the HTML tags and smart tags in a basic display page
using a text editor after it has been created. After you modify the page, however,
you cannot alter the operator view using the GUI. You must perform any
additional configuration of the operator view using the text editor.

Advanced display pages:

An advanced display page contains HTML markup that freely specifies how the
Web browser arranges the display elements in the operator view.

Unlike basic display pages, an advanced page can contain any type of HTML
content that can be displayed by a Web browser. Like basic display pages, the page
also contains embedded smart tags that specify which data is displayed in the
view and how it is displayed. You must manually create advanced display pages
using a text editor. For more information, see “Creating display pages manually”
on page 7.

The following example shows a simple page that can display the data that is
retrieved by the policy in “Advanced operator view policies” on page 3.
<html>
<head>
<link rel="stylesheet" type="text/css" href="my.css" />
<script src="/netcool/scripts/prototype.js" type="text/javascript"></script>
<script src="/netcool/scripts/scriptaculous.js" type="text/javascript"></script>
<script src="/netcool/scripts/script.js" type="text/javascript"></script>
<script src="/netcool/scripts/opview.js" type="text/javascript"></script>
<title>Operator View: <!--property:policy="EX_01" --></title>
<!-- <!--property:DefaultClusterName="NCICLUSTER" --> -->
</head>
<body>
<h1>MY INTRANET</h2>
<p>Example Operator View</p>
<h1>Event Summary</h1>
<p>Information passed to view from event source using URL syntax:</p>
<table>
<tr>
<td>Node</td>
<td>Severity</td>
<td>Summary</td>
<td>Count</td>
</tr>
<tr>
<td>
<!--showdata:

var="Node"
type="scalar"
format="string"
id="node-element"
class="node-class"
style="color: #3f3f3f"
title="Hostname or IP Address of Node"
default="Hostname or IP Address Unknown"
cacheread="true"
cachewrite="true"
autourl="false"

-->
</td>
<td>
<!--showdata:

var="Severity"
type="scalar"
format="string"
id="severity-element"

Chapter 1. Introduction to operator views 5

class="severity-class"
style="color: #3f3f3f"
title="Severity of Event"
default="Severity Unknown"
cacheread="true"
cachewrite="true"
autourl="false"

-->
</td>
<td>
<!--showdata:

var="Summary"
type="scalar"
format="string"
id="summary-element"
style="color: #3f3f3f"
title="Summary of Event"
default="Summary Unknown"
cacheread="true"
cachewrite="true"
autourl="false"

-->
</td>
<td>
<!--showdata:

var="Count"
type="scalar"
format="string"
id="count-element"
class="count-class"
style="color: #3f3f3f"
title="Event Count"
default="Count Unknown"
cacheread="true"
cachewrite="true"
autourl="false"

-->
</td>
</tr>
</table>
<h1>Node Summary</h1>
<p>Information about the node where the event occurred.</p>
<p>Retrieved from Netcool/Impact data source using a GetByFilter
query in the operator view policy.</p>
<!--showdata:

var="Nodes"
type="orgnodes"
format="customtable"
headerclass="head"
action_count="0"

-->
<p>In per item format.</p>
<!-- test_showdata:

var="Nodes"
type="orgnodes"
format="peritem"

--->
<h1>Contact Summary</h1>
<p>Contact information for the administrator currently on-call.</p>
<p>Retrieved from an LDAP data source using a GetByFilter query
in the operator view policy.</p>
<!--showdata:

var="Contacts"
type="orgnodes"
format="customtable"
headerclass="head"

6 Netcool/Impact: Operator View Guide

action_count="0"
-->
</body>
</html>

Using AJAX in advanced display pages:

AJAX capabilities enhance operator view display pages. You use them to refresh
individual elements on a display page on a tag by tag basis.

Procedure

To enable AJAX in the operator view, add new attributes to the smart tags in your
HTML display page.
The following smart tag attributes are used to enable AJAX in the operator view,
and they apply to the Scalar, List, and OrgNodes tags:
v update_interval
v update_option
v update_delay
v update_label
v update_policy
v update_tags (and *_override_tags)
v update_params
v update_precall
v update_postcall
v update_effect

Smart tags with these attributes refresh content automatically at specified intervals,
or they can be refreshed manually.

What to do next

For more information about each new smart tag attribute, see the following
sections:
v “Scalar tag” on page 39
v “List tag” on page 41
v “OrgNodes tag” on page 44

Creating display pages manually:

If you create an operator view policy outside of the Operator View editor, you
must manually upload its display page to the Impact Server.

About this task

The name of the manually created policy should be prefixed with “Opview_”.
Policy names are case-sensitive.

Procedure

1. On the Impact Server navigate to the $IMPACT_HOME/opview/displays directory.
If the GUI Server is configured in a failover cluster environment, then you need
to copy the .html files from one GUI Server server to another.

2. Upload the display page.

Chapter 1. Introduction to operator views 7

Make sure the display page file name follows the naming convention, as
specified in “Display pages” on page 4.

3. Open or refresh the Operator View UI.
Select the required operator view from the list and open it for editing. Verify
that the operator view editor contains your operator view.

Setting up an operator view
To set up a basic operator view, you use the GUI to specify a page layout and
select the data to display in the view. The GUI automatically creates the display
page and the operator view policy.

To set up an advanced operator view, you use a text editor or the GUI to create the
operator view policy, and then you use the text editor to create the display page
that is associated with the view.

For more information about setting operator views, see “Working with basic
operator views” on page 9 and “Working with advanced operator views” on page
14.

Managing an operator view
You can use the GUI to view, modify, and delete existing basic operator views and
the policies associated with any view type. You use a text editor and other system
utilities to view, modify, and delete the display page for an advanced operator
view.

For more information about managing operator views, see “Working with basic
operator views” on page 9 and “Working with advanced operator views” on page
14.

Operator view process
When a user opens an operator view, the Web browser sends an HTTP request to
the GUI Server for the data that is located at the specified URL. The GUI Server
then performs the following actions:
v Parses the incoming HTTP request to identify the operator view and to obtain

any event information that is passed using the URL.
v Opens the display page associated with the operator view.
v Runs the policy that is associated with the operator view and passes the policy

any incoming event information contained in the URL.
v Filters the display page, interprets any smart tags that it contains, and then

replaces the tags with the data retrieved by the operator view policy
v Returns the resulting HTML output to the requesting browser.

The Web browser then displays the operator view.

8 Netcool/Impact: Operator View Guide

Chapter 2. Working with operator views

Using a combination of the GUI, operating system utilities, and an external text
editor you create new operator views, and view, modify, and delete existing
operator views. After you create an operator view, you can customize it by
manually editing the operator view policy and display page.

Working with basic operator views
You create basic operator views with the GUI.

Operator views have the following configuration properties:
v Operator view name
v Layout options
v Action panel policies
v Information groups

Each basic operator view has a corresponding operator view policy. This policy is
named Opview_viewname, where viewname is the name of the operator view. By
default, this policy is in the global repository but is not the member of any project,
including the one currently selected in the GUI.

Operator view name
An operator view name is a unique name used to identify the view.

The GUI Server also uses this name as part of the operator view URL that you use
when you open the view in a web browser.

Layout options
When you create a basic operator view using the GUI, you can use the layout
options and the associated preview feature to specify how different parts of the
tool are arranged on the resulting web page.

The following table shows the display panels in a basic operator view:

Table 1. Operator view display panels

Display Panel Description

Event panel Displays information, if any, passed from Netcool/OMNIbus or
another application to the operator view. This information can be
fields in a Netcool/OMNIbus event, or any other information that
can be expressed as a set of name/value pairs.

You can configure the layout so that the event panel is displayed on
the top or the bottom of the operator view, or not at all.

Action panel Contains a list of policies associated with this view. You can
configure the layout so that the action panel is displayed on the top,
the bottom, the left or the right of the display, or not at all.

Information group
panel

Displays sets of information retrieved from data types. This data is
often business data that is related to event information passed to the
view from Netcool/OMNIbus or another application.

© Copyright IBM Corp. 2006, 2014 9

Action panel policies
You can use the action panel editor in the GUI to specify one or more policies that
are displayed in the action panel of a basic operator view.

The action panel presents a list of policies that the user can start from within the
view. This is an optional part of the operator view function. You use the action
panel to start policies only, you cannot use it to display data that is returned by a
policy. An advanced operator view, however, does provide the capability to display
this data.

Information groups
An information group is a set of dynamic data that is displayed when you open
the view.

This is often business data that is related to event information that is passed to the
view from Netcool/OMNIbus or another application. The data that is displayed in
an information group is obtained by a query to a data source either by filter or by
key.

When you create a basic operator view using the GUI, you can specify one or more
information groups that are to be displayed by the view.

The following table shows the properties that you specify when you create an
information group:

Table 2. Information group configuration properties

Property Description

Group name Unique name that identifies the information group.

Type Type of query to a data source. Available options are:

v By Key: Key expression that specifies which data to retrieve from the
data type.

v The filter syntax is similar to the contents of the WHERE clause in an
SQL select statement.

v By Filter: SQL filter string that specifies which data to retrieve from the
data type.

Data type Data type that contains the data that you want to display.

Value Add a value.

Style Layout style for data items in the resulting information group. Options
are Tabbed and Table.

You can customize the information that is displayed in the information groups by
editing the operator view policy.

Creating a basic operator view
Complete the following steps to create basic operator views.

About this task

Procedure
1. Log on to the GUI.

10 Netcool/Impact: Operator View Guide

2. In the navigation tree, expand System Configuration > Event Automation
click Operator Views to open the Operator Views tab.

3. From the Cluster list, select the cluster you want to use.
4. From the Project list, select the project you want to use.
5. Click the New Operator View icon to open the New Operator View.
6. In the Operator View Name field, enter a unique name for the operator view.

You cannot edit the name once the operator view is saved.
7. In the Layout Options area, specify the position of the event panel and action

panel in the operator view. You can preview the appearance of the operator
view using the images available in the Preview area.

8. Click the Action Panel link, select one or more action policies that the user
can open from within the operator view.

9. Click the Information Groups link. Use the following steps to create one or
more information groups:
a. Click the New Information Group icon to insert a new row into the

information groups table.
b. In the Group Name field, type a unique name for the group.
c. From the Type list, select By Filter or By Key to specify whether the

information group retrieves data from a data type by filter or by key.
d. From the Data Type list, select the data type that contains the information

you want to display.
e. In the Value field, enter a filter or key expression. If the Type is By Filter

adding a value is optional. If the Type is By Key then the value is
mandatory.

f. In the Style list, select Tabbed or Table to specify how the operator view
shows the resulting data.

g. Press Enter on your keyboard to confirm the value you are adding to the
information group (or press Escape on your keyboard to cancel the edit).

h. Repeat these steps to create multiple information groups for any operator
view.

i. To edit an information group, click the item you want to edit and change
the value.

j. To delete one or more information groups, multiselect the rows groups
using the Ctrl and shift keys on the keyboard, then click Delete.
v To sort rows up or down, select a row or multiple rows to activate the

Move Up and Move Down arrows on the toolbar. Click the required
icon to move the rows up or down by one row.

10. Click the Save icon on the main editor toolbar to implement the changes.

Manually editing basic operator view components
After you use the GUI to create a basic operator view, you customize the view by
manually editing the operator view policy and display page.

For more information about editing the operator view policy and display page, see
“Editing the operator view policy” on page 12 and “Editing the operator view
display page” on page 12.

Chapter 2. Working with operator views 11

Editing the operator view policy
About this task

Basic operator view policies are named Opview_viewname, where viewname is the
name of the operator view. By default, these policies are not part of any project.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation.

click Policies to open the Policies tab.
2. From the Projects list, select Global, browse the policy list.
3. To edit an operator view policy, right click on the policy and click Edit, or

double click on the policy.
4. Change the filter or key expression associated with an information group so

that it contains event variables.
The most common change to a basic operator view policy is to change the filter
or key expression associated with an information group so that it contains
event variables. You can select data that appears in the group based on event
information passed to the view from Netcool/OMNIbus or another application.
You reference these event variables in the filter using EventContainer.field ,
where field is the name of the variable.

Example

The GetByFilter statement contains a filter that retrieves data items from a Node
data type where the value of the Hostname field matches the value of the Node
event field passed to the operator view:
InfoPanelNodeGroup=GetByFilter
("Node", "Hostname=’" + EventContainer.Node + "’", false);

The GetByKey statement contains a key expression that retrieves data items from a
Node data type where the value of the key field matches the value of the Node
event field passed to the operator view:
InfoPanelNodeGroup=GetByKey("Node", EventContainer.Node, Null);

Editing the operator view display page
Basic operator view display pages are named clustername-viewname.html, where
clustername is the name of the Tivoli Netcool/Impact server cluster and viewname
is the name of the operator view. These pages are located in the
$IMPACT_HOME/opview/displays directory.

You can make relatively unrestricted changes to the HTML content and smart tags
in the display page for a basic operator view. However, you must make sure that
changes you make to smart tags in the display page are also reflected in the
operator view policy. In addition, after you modify the display page, you can no
longer use the GUI to edit the configuration properties for the view.

For information about operator view smart tags, see Chapter 3, “Working with
smart tags,” on page 27.

Viewing operator views
To view the basic and advanced operator views that are currently defined in
IBMTivoliNetcool/Impact, log on to the GUI.

12 Netcool/Impact: Operator View Guide

Procedure
1. Log on to the GUI
2. In the navigation tree, expand System Configuration > Event Automation,

click Operator Views to open the Operator Views tab.
3. From the Cluster list, select the cluster that you want to use.
4. From the Project list, select the project that you want to use.
5. Double-click the operator view to see the details or right click the operator

view and click Edit.

Editing operator views
You can edit operator view properties.

About this task

You can use either the GUI or an external text editor to modify the policy that is
associated with an advanced operator view. If you modify the policy using an
external text editor, you must import the policy manually after you make your
changes. You are not required to stop and restart the Impact Server or GUI Server
after modifying an existing operator view policy. Any changes that you make to
the policy are immediately recognized by the system.

You can only use an external text editor to modify the display page that is
associated with an advanced operator view only. Do not attempt to use the tools
provided in the GUI for use with basic operator views to modify the display page.
If you use the GUI to modify the display page, the changes that you make
override the HTML content and smart tags in the existing HTML file.

Procedure
1. To modify a basic operator view, log on to the GUI.
2. In the navigation tree, expand System Configuration > Event Automation,

click Operator Views to open the Operator Views tab.
3. From the Cluster list, select the cluster that you want to use.
4. From the Project list, select the project that you want to use.
5. Double-click the operator view you want to modify, or click the Edit Operator

View icon.
6. Modify the operator view configuration properties as required. You cannot

modify the Operator View Name.
7. Click the Save to implement the changes.

Deleting operator views
To delete a basic or advanced operator view log on to the GUI.

Procedure
1. Log on to the GUI.
2. In the navigation tree, expand System Configuration > Event Automation,

click Operator Views to open the Operator Views tab.
3. From the Cluster list, select the cluster that you want to use.
4. From the Project list, select the project that you want to use.
5. Select the operator view that you want to delete and click the Delete icon on

the toolbar, or right click the operator view and click Delete.

Chapter 2. Working with operator views 13

6. A confirmation message displays.
7. Click OK to delete the operator view.

The operator view is removed from the GUI display and the operator view
display file and policy are removed from the system.

Working with advanced operator views
To set up an advanced operator view, you do the following processes:
v Create an operator view policy
v Create a display page

For more information about creating operator view policies and creating display
pages, see “Creating the operator view policy” and “Creating the display page” on
page 15.

Creating the operator view policy
The operator view policy is a policy that contains the logic that is required to
retrieve and manipulate the data that is displayed in the view.

This policy must be named Opview_viewname, where viewname is the name of the
operator view. There is one policy for each operator view. You can create an
operator view policy in one of the following ways:
v You can use the GUI to create the operator view policy.
v You can use an external text editor to create the policy. After you create it, you

import the policy.

Tip: You can also create the basic operator view, and then modify the content of
the operator view policy. Delete the content from the operator view .htmlfiles. The
content between the <body> </body> can be deleted and updated with your own
content.

An operator view policy performs the following tasks:
v Handles incoming events.
v Queries data sources for data.
v Manipulates and normalizes the data as necessary so that the format is suitable

for display in the view.
v Overrides smart tag attributes specified in the display page.

Handling incoming events
The operator view provides a special syntax that you use to pass event data to the
view using query string values in its URL.

When the GUI Server receives an HTTP request for an operator view, it passes any
event values that are contained in the URL to the operator view policy for
processing.

Each event field that is passed to the policy is stored as a variable in the policy
context before processing begins. The variable names for the event fields are
exactly as specified in the URL. For example, if you pass a summary value in the
URL using the Summary=Node+not+responding+to+ping string, you can access this
value in the policy through the EventContainer using EventContainer.Summary or

14 Netcool/Impact: Operator View Guide

@Summary for short. If you set a summary variable within the policy to a value, for
example, Summary="Node not responding to ping", it can be accessed through a
smart tag, for example:
showdata: var="Summary"

type="scalar"
format="string"

If you want to display an event field value exactly as it was passed to the operator
view, you do not need to perform any operations on the value in the policy.

Querying data sources
An operator view typically queries one or more data sources for information to
display.

Often, this information is correlated with incoming event field data that is passed
to the view using the URL syntax.

You can query the data sources using the GetByFilter, GetByKey or DirectSQL
functions, or using any other function that retrieves data as a scalar variable or
array of data items.

If you are retrieving data using a function that returns an array of data items, you
must explicitly set the return variable for the function. You reference this return
variable when you create the display page.

Manipulating or normalizing data
You must perform any manipulation or normalization of data within the policy
before it is displayed in the operator view.

For example, if you need to extract strings from data, trim white space from
strings or perform calculations on numeric values, you must perform these
operations in the operator view policy before they are displayed in the view.

Overriding smart tag attributes
You can also optionally override the value of smart tag attributes in a policy.

These attributes are specified as part of the smart tag definitions that you insert
into a display page. Overriding smart tag attributes in a policy you dynamically
control some aspects of how an operator view displays data. For more information
about overriding attributes, see “Overriding attributes” on page 29.

Creating the display page
A display page is a text file that contains HTML content and special instructions
called smart tags that are used to determine which data to display in the operator
view and how to display it.

Display pages are named clustername-viewname.html, where clustername is the
name of the IBM Tivoli Netcool/Impact server cluster and viewname is the name of
the operator view. These pages are located in the $IMPACT_HOME/opview/displays
directory. There is one display page for each operator view.

The HTML content in a display page is identical to the HTML code that is in any
other Web page. The HTML content specifies the static content and formatting for
the resulting operator view, and any additional metadata that is required to present
the content. You can use HTML syntax to arrange and format the content in the
display page in the same way you create or design any other Web page.

Chapter 2. Working with operator views 15

For advanced operator views, you create the display page using an external text
editor. One approach for creating operator views is to design the Web page and
enter the HTML content first using mock data that is similar to the data that you
expect to display in the operator view. Then, you can insert the smart tags that
present the dynamic data that is obtained by the operator view policy.

The smart tags in the display page do the following things:
v Identify the cluster where the operator view is running.
v Identify the operator view policy.
v Specify which data to display.
v Specify how the data is displayed.

Identifying the server cluster
Every operator view display page must contain one instance of the property smart
tag that specifies the name of the server cluster where the view is running.

Typically, this property tag is located in the <head> element of the HTML page,
inside a double set of HTML comment tags that ensure that the tag is not
displayed by the Web browser and can be read when you view the page source.

The following example shows how you identify the server cluster in a display
page:
<!-- <!--property:DefaultClusterName="NCICLUSTER" --> -->

Identifying the operator view policy
Every operator view display page must also contain one instance of the property
smart tag that specifies the name of the policy that is associated with the operator
view.

As with the previous property tag, this tag must come before any tag that inserts
data in the page. This property tag is also typically located in the <head> element
of the HTML page, inside a double set of HTML comment tags.

The following example shows how you identify the operator view policy in a
display page:
<!-- <!--property:policy="EX_01" --> -->

For more information about the property tag, see “Property tag” on page 35.

Specifying which data to display
Advanced display pages can use any or all special smart tags that specify which
data obtained by the operator view policy to display in the view.

You insert these tags in the <body> element of the display page at the location in
the HTML content where you want the data to be displayed on the resulting Web
page.

The following smart tags display data:

Scalar tag
You use the scalar tag to display single values, such as a string or a
numeric value (in string format only).

List tag
You use the list tag to display a list of scalar values.

16 Netcool/Impact: Operator View Guide

OrgNodes tag
You use the orgnodes tag to display an array of data items that are
retrieved from a data source using a function like GetByFilter or GetByKey.

For more information about the scalar tag, list tag, and orgnodes tag, see “Scalar
tag” on page 39, “List tag” on page 41, and “OrgNodes tag” on page 44.

The following example shows how you display an array of data items that are
stored by the operator view policy in a variable named Admins:
<p>Display the administrators who are on call in a table:</p>
<!--showdata:

var="Admins"
type="orgnodes"
format="customtable"

-->

Specifying how data is displayed
The scalar, list, and orgnodes tags are used to specify how the data obtained by the
operator view policy is displayed in the view.

You use these tags to format the data as plain text, links, buttons, or actions (which
cause the view to open another operator view). Attributes that are supported by
the tags are used to control the appearance of data that is displayed in table
format. They are also used to associate CSS styles with the data and to associate
the data with HTML DOM IDs and classes. You can then use these elements to
format the operator view Web page using DHTML or CSS.

The following example shows how you use the attributes of an orgnode tag to
control how data is displayed in a table:
<p>Display the administrators who are on call in a table:</p>
<!--showdata:

var="Admins"
type="orgnodes"
format="customtable"
id="admin-table"
class="formatted-table"
headerclass="head"
cellclass="formatted-table-class"
cellstyle="background-color: #3f3f3f;"
action_count="0"

-->

Customizing operator view displays index page
The operator view displays index page is the page where you can view and access
all your defined views.

You access the operator view displays index page in a web browser. For more
information about accessing the operator view displays index page, see “Creating
the custom operator view page” on page 22.

You can customize the appearance and behavior of the operator view displays
index page in one of the following ways:
v .css definitions
v .meta files
v index URL (cluster, stylesheet)

Chapter 2. Working with operator views 17

For more information about customizing the operator view displays index page,
see “Customizing the index page using CSS definitions,” “Customizing the index
page using .meta files,” and “Customizing the index page using index URL” on
page 20

Customizing the index page using CSS definitions
Every section and subsection of the index page is wrapped either in a div or span
tag and you can customize it through the style definitions in the
$IMPACT_HOME/opview/assets/installed/opview_index.css stylesheet.

About this task

To customize the index page through the style definitions:

Procedure

Open the opview_index.css stylesheet and modify any of the following CSS
elements:
v .logout_link

v #login_label

v #login_user

v .superheader

v .header

v #tab_list

v .tab_entry

v .display_list

v #list_[CLUSTERNAME]

v #entry_[CLUSTERNAME]-[DISPLAYNAME]

v .display_entry

v .display_icon

v .display_title

v .display_description

v .display_params

v .parameter

v .parameter_[PARAMETER_NAME]

v .display_launch .display_lastupdate_section

v .display_lastupdate_label

v .display_lastupdate_value

Customizing the index page using .meta files
You can customize the properties of the displays listed on the operator view index
page, using additional .meta files in the $IMPACT_HOME/opview/displays directory.
Each display is individually customized with its own .meta file.

About this task

To customize the index page through a .meta file:

18 Netcool/Impact: Operator View Guide

Procedure
1. Create a new text file and fill it in with the parameters that you want to

customize in your display. For more information about the parameters that you
can customize in a .meta file, see “Properties used in .meta files.”

2. Save the file to the $IMPACT_HOME/opview/displays directory with the same
name as the display file but postfixed with a .meta extension. For example, for
a NCICLUSTER-ReprocessFailedEvent.html display page you have to create a
meta file with the name NCICLUSTER-ReprocessFailedEvent.html.meta file.

Example

Example of a meta file with customized parameters:
title= Fancy display
description= Really nice!

parameters=cost,profit
target-window=_new

last-update=In the year 3000
graphic=/opview/assets/installed/pretty_picture.gif
hide-fields=
authorized-roles=OPVIEW_USER

Properties used in .meta files
The following table provides details about the .meta file properties that you can
use to change the look and behavior of a display in the operator view displays
index page.

Table 3. List of properties used in .meta files

Property Description

title Use this property to specify an alternate name for the operator
view display.

description Use this property to provide descriptive details for the operator
view.

last-update By default, the last modified timestamp of the operator view
display filename is listed as the Last Update on the index page.
Use this property to override that value.

graphic With this property you specify the URL to a logo or an
application icon that you would like to display alongside your
operator view entry. The path must be either a full URL, for
example

http://www.google.com/images?q=tbn:I1KyULEyeN1Z6M: :
i192.photobucket.com/albums/z48/adtracker/noid.gif

or, if the file is local to your file system, you must put it in the
$IMPACT_HOME/guiserver/webapps/opview/assets/installed
directory and provide a path that is relative to the /opview
directory. For example:

graphic=/opview/assets/installed/my_picture.gif

hide-fields If there is any information you want to hide on the index page
for a specific entry, then you can assign a comma-delimited list
of the fields to hide in this property. For example, if you want to
hide the description and last-update information for a specific
entry set the property to:

hide-fields=description,last-update

Chapter 2. Working with operator views 19

Table 3. List of properties used in .meta files (continued)

Property Description

parameters The index page provides event context. The parameters property
configures the entry on the index page with parameter inputs
that you can provide before running the operator view display.

target-window Use this parameter to specify an alternate window to open the
operator view display into. Specifying target-window=_new
would run the operator view display into the window specified.
If you omit out this parameter in the .meta file your display will
open in the same window as the operator view display index.

authorized-role You can prevent certain operator view displays from being listed
on the index page. By assigning a role or roles to the
authorized-roles property, you are effectively requiring the
currently logged-in user to have the proper credentials to view
the display. If they are not authorized the entry will not show
up on the index page. If more than one role is used as the value
of the parameter separate them with a comma (,). For example:

authorized-roles=IMPACT_USER,OPVIEW_USER

For more information about the roles that can be assigned to
users, see the Administration Guide, Configuring the GUI server.

Customizing the index page using index URL
You can customize the index page through the following parameters that can be
passed in the URL query string:
v cluster - you can load up the index page with just the available displays for a

single cluster or you can specify an ordered list of clusters for the index page.
v stylesheet - an alternate stylesheet can be swapped in so the appearance of the

operator view can be customized and displayed to various users or user types.

Passing a cluster with the index page
Pass the cluster parameter in the operator view display URL to load up the index
page with just the available displays for a single cluster or to specify an ordered
list of clusters for the index page.

Procedure
v Displaying a single cluster.

To load up the index page with just the available displays for a single cluster
append the cluster name to the index page using the ?cluster=<cluster_name>
syntax. For example:
URL: http://<hostname>:16310/opview/displays/index?cluster=NCICLUSTER

Note: If there is only one cluster in the configuration, the cluster tabs are not
displayed.

v Reordering cluster tabs.
To specify an ordered list of clusters for the index page, append a comma
delimited list of clusters to the index file using the
?cluster=<cluster1_name>,<cluster2_name> syntax. For example:
URL: http://<hostname>:16310/opview/displays/index?cluster=NCICLUSTER,NCI1CLUSTER

Note: If there is only one cluster in the configuration, the cluster tabs are not
displayed.

20 Netcool/Impact: Operator View Guide

Passing an alternate stylesheet with the index page
You can swap in an alternate stylesheet to customize the appearance of the
operator view to suit various users or user types.

Procedure

To swap in an alternate stylesheet, append the new stylesheet name to the index
page using the following syntax:
http://<hostname>:<port>/opview/displays/index?stylesheet=<aternate_stylesheet>

Example

An example of using an alternate stylesheet in the operator view index page URL:
http://<hostname>:16310/opview/displays/index?stylesheet=fancy

In this example the default stylesheet, opview_index.css, is replaced by the
alternate stylesheet, fancy.css. Place the alternate stylesheet under the assets path,
$IMPACT_HOME/opview/assets/installed.

Viewing an operator view page in the Tivoli Integrated Portal
You can use the portlet and page features in the Tivoli Integrated Portal to view an
operator view URL.

Complete the following steps to set up a custom operator view page in the Tivoli
Integrated Portal.
v Select the operator view browser URL you want to display.
v Create a custom operator view portlet and add the URL to the portlet.
v Create the custom operator view page and add the portlet page to view the

operator view URL.

Selecting the operator view URL
Select the operator view that you want to display in the Tivoli Integrated Portal
and copy the URL from the browser URL field.

Before you begin

Make sure your Tivoli Integrated Portal user rights give you permissions to create
pages.

Procedure
1. Log on to the Tivoli Integrated Portal.
2. In the Tivoli Integrated Portal navigation pane, click the System Configuration

-> Event Automation -> Operator Views node.
3. Select the operator view, then right-click and select View to open the operator

view in a new window.
4. In the new window, copy the URL from the browser URL field.

Creating a custom operator view portlet
Create a custom operator view portlet in the Tivoli Integrated Portal and add the
operator view URL to the portlet.

Chapter 2. Working with operator views 21

Before you begin

Make sure that you copy the operator view URL from the URL field in the
browser.

Procedure
1. In the Tivoli Integrated Portal navigation pane, click Settings > Portlets node.
2. Click the New icon in the toolbar to open the Portlet creation wizard.
3. Click Next to start the wizard.
4. For the Base Portlet, select Web Widget. Click Next .
5. Complete the portlet Name and Description fields. Click Next.
6. You can assign the level of privileges for any of the available roles by selecting

the role and adding it to the relevant list, User, Privileged User, Editor,
Manager.

7. Click Next.
8. Complete the following fields:

Widget Title:
Add the name you want to use.

Home Page:
Paste in the URL of the operator view, for example,
https://<hostname>:<port>/opview/displays/NCICLUSTER-
myoperatorview.html

Help Page:
You can paste in the URL of the help page if one is available.
Otherwise, leave the field blank.

HTML iframe name:
Leave this field blank.

Show a browser control toolbar
Clear this check box.

9. Review the summary, then click Finish to save the portlet.

Creating the custom operator view page
Create a custom operator view page to display the operator view portlet that
shows the operator view URL page.

Before you begin

Make sure your Tivoli Integrated Portal user rights give you permissions to create
pages.

Procedure
1. In the Tivoli Integrated Portal navigation pane, click the Settings > Pages node.
2. Click New Page in the Pages window.
3. In the Page Settings window, provide the following information:

Page name
The name of the new page.

Page location
The position of the new page in the navigation pane.

22 Netcool/Impact: Operator View Guide

Page layout
Choose the “Classic”, or the “Freeform” layout for the new page.
Optional

Click OK to continue.
4. In the Choose a Portlet window, select the portlet you created for the operator

view and add it to the page.
5. Click OK.
6. Click Save in the upper right corner of the page. The operator view URL is

displayed.

Sending data from a charting table to an operator view
You can send data from a Tivoli Integrated Portal charting table to an operator
view in Netcool/Impact.

About this task

After you complete this task, you can use the node click events feature of the
Tivoli Integrated Portal to send data from a charting table to an operator view in
Netcool/Impact. The information is passed through the URL to the receiving
operator view. The information is made available through the EventContainer in
the operator view policy.

Procedure
1. Create a Tivoli Integrated Portal page.

To create a Tivoli Integrated Portal page, click the Settings > Pages node in the
Tivoli Integrated Portal navigation pane. Click New Page in the Pages window.

2. Create two portlets. The first portlet represents the operator view and acts as a
container. The second portlet uses the Tivoli Integrated Portal charting table as
a base portlet and it retrieves information from the specified data type in
Netcool/Impact.
To create a portlet, click Settings > Portlets in the Tivoli Integrated Portal
navigation pane. Click the New icon in the toolbar to open the Portlet creation
wizard and click Next to start the wizard.

3. Edit the portlet preferences. To add the receiving operator view to the portlet
that represents the operator view, edit the portlet preferences. Enter the name
of the operator view that you want to send information to in the Operator
View Name field.

4. To send data from the chart to the operator view, right click on a row in a table
in Tivoli Integrated Portal and click Emit Context. The results are returned in
the operator view policy.

Results

You can now use the emit context feature to send data from the portlet in Tivoli
Integrated Portal to the operator view in Netcool/Impact.

The results are returned in the operator view policy in the Event Container. To
display the results in the JavaScript Object Notation (JSON) format, you must
decode the results that are contained in the Event Container. For example:
eventVar = @Event
eventVar = Replace(eventVar, """, ’"’, 100);

Chapter 2. Working with operator views 23

Example

The following example demonstrates how to send data from a charting table in
Tivoli Integrated Portal to an operator view that is based on a flat file policy.

This example uses the following flat file policy that contains a resource name and
ID:
resourcename, id
resource1, 1
resource2, 2

1. Create a flat file data source that uses the data from an existing file.
2. Create a flat file data type. You must ensure that the Access the data through

UI data provider check box is selected and that the key field is selected. For
example, you can select ID as the key field for the example policy that is
defined in the previous step.

3. Create a portlet that uses the Tivoli Integrated Portal charting portlet as the
base portlet. To create a portlet, in the Tivoli Integrated Portal navigation pane,
click Settings > Portlets. Click the New icon in the toolbar to open the Portlet
creation wizard.
a. Click Next to start the wizard.
b. Select Charting base portlet and click Next.
c. Select a Provider a name and description and click Next.
d. Choose your security and click Next.
e. Select Create a chart and click Next.
f. Select the flat file data source that you created as the data set.
g. Select the flat file data type that you created from the data set.
h. Set the visualization settings as a Tivoli Integrated Portal table that selects

all columns.
4. Create an operator view if required. You can use the default operator view that

is created by the editor. This step is optional because you can also use an
existing operator view.

5. Add the following statements to the operator view that you are using. This
example assumes that you are using the Impact Policy Language (IPL) for your
operator view policy:
log(CurrentContext());
eventVar = @Event;
eventVar = Replace(eventVar, """, ’"’, 100);
log("Passed JSON values: "+eventVar);

6. Create a Tivoli Integrated Portal page that contains two portlets. The first
portlet is the charting portlet that you created previously. The second represents
the operator view. To create a Tivoli Integrated Portal page, click the Settings >
Pages node. Click New Page in the Pages window in the Tivoli Integrated
Portal navigation pane.

7. Add the operator view policy from Netcool/Impact to the operator view
portlet. To add the policy, edit the preferences for the operator view portlet and
enter the name of the operator view in the Operator View Name field. Save
your changes. For example, if the operator view policy is called Opview_test,
you enter test in the Operator View Name field.

8. After both portlets load, right click a row in the table and click Emit context.
The selected row of data is copied to the event area of the operator view.

9. Open the log file for the operator view policy Opview_test. The details of the
passed data are displayed as follows:

24 Netcool/Impact: Operator View Guide

Parser log: Passed JSON values: {"resourcename":"resource1","id":"1"}

Chapter 2. Working with operator views 25

26 Netcool/Impact: Operator View Guide

Chapter 3. Working with smart tags

Smart tags are text elements in a display page that contain special instructions that
are used to identify the Impact Server cluster, specify the policy associated with the
operator view and determine which data to display in the view and how to
display it.

Smart tags overview
You enclose smart tags in HTML comments and embed them inside the HTML
content that makes up the display page.

The following example shows simple smart tags as they are displayed in a display
page.
<html>
<head>
<title>My Operator View</title>
<!-- <!--property:policy="MyView" --> -->
<!-- <!--property:DefaultClusterName="NCICLUSTER_02" --> -->
</head>
<body>
<h1>OrgNodes Smart Tag Example</h1>
<!--showdata:

var="Nodes"
type="orgnodes"
format="customtable"

-->
</body>
</html>

The smart tags in this example specify that the name of the server cluster is
NCICLUSTER_02 and that the name of the policy that is associated with the operator
view is Opview_MyView. The tags also display the contents of a variable named
Nodes that contains a set of data items that are retrieved by the operator view
policy.

Every display page must contain at least two property tags: one tag that specifies
the name of the server cluster and another tag that specifies the operator view
policy. For more information about the property tag, see “Property tag” on page
35.

Smart tag syntax
Smart tags us a specific syntax.

Smart tags have the following syntax:
<!--tagtype:

attribute=value
attribute=value
attribute=value
.
.
.

-->

© Copyright IBM Corp. 2006, 2014 27

Where tagtype is either property or showdata, and attribute and value are
name/value pairs that specify the parameters for the tag. You enclose smart tags
inside HTML comments in the display page. You can place attributes in the smart
tag in any order.

Attribute values in a smart tag must be specified as text strings enclosed with
double quotation marks ("). For example, the following attribute assignments are
valid:
<!--showdata:

var="Nodes"
type="orgnodes"
format="customtable"

-->

The following attribute assignments are invalid:
<!--showdata:

var=Nodes
type=orgnode
format=customtable

-->

White space
White space is permitted in a smart tag only as a separator between the tagtype
values and between the attribute assignments.

You cannot use white space between the HTML comment characters and the
tagtype, or to separate attribute names from the equal sign (=) and the attribute
value.

For those attribute assignments that contain a comma-separated list of values, you
cannot use white space between the assigned values. White space in the list is
interpreted as part of the value of the list element where it occurs. The following
example shows a valid attribute assignment that specifies a comma-separated list
of values:
headerclass="class1,class2,class3"

The white space in the following assignment is interpreted as part of the values of
elements in the list:
headerstyle="class1, class2, class3"

This means that the second and third elements in the list have a leading white
space in their string value.

Escape characters
The smart tag syntax supports escape characters for the double quotation mark ("),
backslash (\), and comma (,) characters only.

For example, to use the double quotation mark in an attribute value, you specify it
as \". Other escape characters, such as \n or \t are not supported. The following
example shows how to use the escape characters to specify the double quotation
mark as part of a value that is assigned to an attribute:
default="My default is \"Default\"."

If there is a comma inside an attribute assignment that contains a list of values,
you must double-escape the character. This is written in the assignment as three

28 Netcool/Impact: Operator View Guide

backslashes followed by the comma (\\\,). You must double-escape the comma
character in this instance because the contents of such a list are parsed twice
during processing.

Common attributes
Advanced smart tags share a set of common attributes that you must set for every
instance of the tag.

These attributes are var, type and format. Together, the common attributes are
known as VTF attributes. Table 4 shows the common attributes.

Table 4. Common attributes

Attribute Description

var Specifies the name of a variable in the operator view policy. This variable
stores the value that is displayed by the smart tag. For scalar tags, this
variable stores a numeric, Boolean, or string value. For list tags, this
variable stores a character-delimited list of values. For orgnode tags, this
variable stores an array of data items.

type Specifies the type of data to display. Options are scalar, list and
orgnode.

format Specifies how to display the value or values in the operator view. Options
are plain, string, url, and action. The plain format inserts the data into the
operator view as plain text. The string format inserts the data inside an
HTML span element. The url format inserts the data as a link. The action
format inserts the data as a link or button that opens another operator
view.

Overriding attributes
The operator view policy can override values of attributes in a smart tag, except
for the common VTF attributes var, type and format.

You dynamically change the attribute values in real time in response to conditions
specified in a policy. One typical use of this feature is to dynamically control the
CSS style that is used by HTML elements that contain operator view data.

The following basic syntax is for overriding a smart tag attribute from within a
policy:
variable_attribute=value;

Where variable is the name of the variable that is passed from the policy to the
smart tag and attribute is the name of the attribute to override.

The following example shows how to override the style attribute of a smart tag
that inserts the value of the latency variable into an operator view. The style
attribute is overwritten if the value of latency is greater than 1000.
threshold = 1000;
If (latency > threshold) {

latency_style="font-weight: bold; font-size: 10pt; color: red";
}

Indexed attributes
Listable tag attributes can be assigned a list of values that is values from the range
[value0],[value1],...,[valueN].

Chapter 3. Working with smart tags 29

Many listable tag attributes can be further modified or augmented individually.
You can do that by assigning a value to an original attribute postfixed with an
index. We later call such an attribute an “indexed attribute”.

An indexed attribute name has the following syntax:
attribute_index

Where attribute is the name of the original attribute and index is an arbitrary
number or string, depending on the type of an indexed attribute.

You can override an indexed attribute by policy, which means that you can apply
the same overriding rules to indexed attributes as you can to original attributes.
For more information about overriding attributes, see “Overriding attributes” on
page 29.

There are fives types of indexed attributes:

Augmentation
In the augmentation type indexed attributes, the indexed attribute adds to
the list, rather than replace an existing attribute. For more information
about augmentation type indexed attributes, see “Augmentation type
indexed attributes.”

Default replacement
In default replacement type indexed attributes, the base attribute holds a
single value, considered the default value, and the indexed attribute holds
any exceptional values. For more information about default replacement
type indexed attributes, see “Default replacement type indexed attributes”
on page 31.

Index replacement
Index replacement type attributes take a list from the base attribute, and
replace a specific index from within that list. For more information about
index replacement type indexed attributes, see “Index replacement type
indexed attributes” on page 32.

Field replacement
With field replacement type attributes, you can also index a specific
element by field name rather than (or in addition to) an integer index. For
more information about field replacement type indexed attributes, see
“Field replacement type indexed attributes” on page 32.

Index field replacement
If a specific change is required to a single data item at a specific field in a
specific row, then index field replacement is required. For more
information about index field replacement type indexed attributes, see
“Index field replacement type indexed attributes” on page 33.

Augmentation type indexed attributes
In the augmentation type indexed attributes, the indexed attribute adds to the list,
rather than replace an existing attribute.

The following attributes are examples of augmentation type indexed attributes:
v params
v action_fieldparams

For more information about augmentation type indexed attributes, see “params
attribute” on page 103 and “action_fieldparams attribute” on page 53.

30 Netcool/Impact: Operator View Guide

Syntax of augmentation type attributes

Augmentation type attributes have the following syntax:
[attribute]=[value0],[value1],...,[valueN]
[attribute]_[index]=[addval0],[addval1],...,[addvalN]

Example of augmentation type attribute usage

The params attribute is used in tags of the List tag type with the following syntax:
params=[var0],[var1],...,[varN]
params_[index]=[var0],[var1],...,[varN]

The params list is a set of var=value pairs sent with an action. In a List type, you
can create a list of actions that are available for the user to click. The unindexed
params attribute provides the base list of parameters that is sent with every action.
However, if you want to send an additional parameter with a specific action, you
must specify its position in the list in the indexed attribute.

Assume that the list is two actions long, and you want to send the name/value
pairs of userid and lastname with each action, but you also want to send
firstname and age with the second action:
params="userid,lastname"
params_1="firstname,age"

The first action (at index 0) has the following params list:
userid,lastname

The second action (at index 1) has the following params list:
userid,lastname,firstname,age

Default replacement type indexed attributes
In default replacement type indexed attributes, the base attribute holds a single
value, considered the default value, and the indexed attribute holds any
exceptional values.

The following attributes are examples of default replacement type indexed
attributes:
v target
v isbutton

For more information about default replacement type indexed attributes, see
“target attribute” on page 123 and “action_isbutton attribute” on page 56.

Syntax of default replacement type attributes

Default replacement type attributes have the following syntax:
[attribute]=[defaultval]
[attribute]_[index]=[exceptionval]

Example of default replacement type attribute usage

In the List tag type, for url format, you can specify a default target to which you
are taken after you click a URL. It can be _self, _new, _parent, _top, and others.

Chapter 3. Working with smart tags 31

Assume that you want to click any of the listed URLs to show the resulting
display in the same window.
target="_self"

But, assume that the list has three URLs, and the middle action (index 1) leads to
an external help page so you want only that URL to open a new browser window:
target_1="_new"

Then the three url targets would be as follows:
first url: target="_self"
second url: target="_new"
third url: target="_self"

The default attribute value is replaced by the indexed attribute value.

Index replacement type indexed attributes
Index replacement type attributes take a list from the base attribute, and replace a
specific index from within that list.

The following attributes are examples of index replacement indexed attributes:
v action_class
v action_style
v cellclass
v cellstyle

For more information about index replacement indexed attributes, see “action_class
attribute” on page 49, “action_style attribute” on page 60, “cellclass attribute” on
page 70, and “cellstyle attribute used in list tag” on page 75.

Syntax of index replacement type attributes

Index replacement type attributes have the following syntax:
[attribute]=[value0],[value1],...,[valueN]
[attribute]_[index]=[newvalx]

Example of index replacement type attribute usage

The headerclass attribute is of the orgnodes type. It holds a list of .css files that
can be applied to a specific header in an orgnodes table.

Assume that the orgnodes table has three fields, in the following order:
userid, lastname, firstname

And for each header, assume that you assign a different .css file:
headerclass="keyhead.css,ltbluehead.css,whitehead.css"

Now assume that duplicates were detected in the userid field during runtime, so it
could not possibly be a primary key. You want to change the style applied to this
header to one of the other .css files. Thus, your policy includes this line:
[var]_headerclass_0="whitehead.css"

Field replacement type indexed attributes
With field replacement type attributes, you can also index a specific element by
field name rather than (or in addition to) an integer index.

32 Netcool/Impact: Operator View Guide

The following attributes are examples of field replacement type indexed attributes:
v cellclass
v cellstyle

For more information about replacement type indexed attributes, see “cellclass
attribute” on page 70 and “cellstyle attribute used in list tag” on page 75.

Syntax of field replacement type attributes

Augmentation type attributes have the following syntax:
[attribute]=[value0],[value1],...,[valueN]
[attribute]_[field]=[newvalx]

Example of field replacement type attribute usage

The headerclass attribute is of the OrgNodes type. It holds a list of .css files that
can be applied to a specific header in an OrgNodes table.

Assume that the OrgNodes table has three fields, in the following order:
userid, lastname, firstname

And for each header you assign a different .css file:
headerclass="keyhead.css,ltbluehead.css,whitehead.css"

Assume that duplicates were detected in the userid field during runtime, so it
could not possibly be a primary key. You want to change the style applied to this
header to one of the other .css files. You can change it by field name:
[var]_headerclass_userid="whitehead.css"

Important:

If aliasing (OrgNodes aliases attribute) is in effect, do not use the alias name for
the field. Always use the original field name.

Index field replacement type indexed attributes
If a specific change is required to a single data item at a specific field in a specific
row, then index field replacement is required.

The following attributes are examples of index field replacement type indexed
attributes:
v action_class
v action_style
v rowcelltext

For more information about index field replacement type indexed attributes, see
“action_class attribute” on page 49, “action_style attribute” on page 60, and
“rowcelltext attribute” on page 112.

Syntax of index field replacement type attributes

Index field replacement type attributes have the following syntax:
[attribute]_[idx]_[field]=[value]

In this case, there might not be an individual base attribute.

Chapter 3. Working with smart tags 33

Example of index field replacement type attribute usage

Assume that the OrgNodes set is populated with three entries.

userid lastname firstname birthdate

12345 Doe Jane 1973-09-23

24680 Smith John 5/12/1957

36925 Jones Bryan 1977-03-21

You use the rowcelltext_[row]_[field] to change a specific value in a table. For
example:
rowcelltext_1_birthdate="1957-05-12"

This piece of code results in the following set of values:

userid lastname firstname birthdate

12345 Doe Jane 1973-09-23

24680 Smith John 1957-05-12

36925 Jones Bryan 1977-03-21

34 Netcool/Impact: Operator View Guide

Chapter 4. Working with basic smart tags

Basic tags are a type of smart tags. You use basic tags to:
v Specify the name of the server cluster where the operator view is running

(required for all display pages).
v Specify the name of the operator view policy (required for all display pages).
v Display the event panel (basic operator views only).
v Display the action panel (basic operator views only).
v Display the information groups panel (basic operator views only).

For more information about basic tags, see “Property tag,” “Event panel tag” on
page 36, “Action panel tag” on page 36, and “Information groups panel tag” on
page 37.

Property tag
You use the property tag to specify the name of the server cluster where the
operator view is running and the name of the operator view policy

You must use the property tag in every display page to specify the name of the
server cluster and the name of the operator view policy. You use the other basic
smart tags in basic operator view display pages only.

The property tag has the following syntaxes:
<!--property:DefaultClusterName=clustername-->
<!--property:policy=policyname-->

Where clustername is the name of the server cluster and policyname is the name of
the operator view policy, without the Opview_ prefix. For example, if the name of
the policy is Opview_EX_01, you must specify the value of the policy attribute as
EX_01.

Every operator view display page must contain both types of property tags. If you
are creating a basic operator view, these tags are automatically inserted when you
create the view in the GUI. If you are creating an advanced operator view, you
must manually add them to the corresponding display page.

The following example shows how to use the property tag to specify the name of
the policy and server cluster in a display page.
<html>
<head>
<title>My Operator View</title>
<!-- <!--property:policy="MyView" --> -->
<!-- <!--property:DefaultClusterName="NCICLUSTER_02" --> -->
</head>
.
.
.
</html>

In this example, the name of the policy is MyView and the name of the cluster is
NCICLUSTER_02. The property tags are wrapped in an extra set of HTML comment
characters to prevent the web browser from displaying the property value.

© Copyright IBM Corp. 2006, 2014 35

Event panel tag
You use the event panel tag to display the event panel in an operator view.

You can use this tag in basic display pages such as those created with the GUI. In
advanced operator views, you can format and display incoming event values using
the scalar and list tags. For more information about event panel tags, see“Scalar
tag” on page 39 and “List tag” on page 41.

The event panel has the following syntax:
<!--showdata:type=panel-event-->

The following example shows how to use the event panel tag in a display page.
<html>
<head>
<title>My Operator View</title>
<!-- <!--property:policy="MyView" --> -->
<!-- <!--property:DefaultClusterName="NCICLUSTER_02" --> -->
</head>
<body>
<!--showdata:type="panel-event"-->
</body>
</html>

Action panel tag
You use the action panel tag to display the action panel in an operator view.

You can use this tag in basic display pages such as those created with the GUI. In
advanced operator views, you can use the scalar, list, and orgnodes tags to freely
format and display links that run other policies. For more information about action
panel tags, see“Scalar tag” on page 39, “List tag” on page 41 and “OrgNodes tag”
on page 44.

The action panel tag has the following syntax:
<!--showdata:

type=panel-action
format=format

-->

Table 5 describes the syntax attributes for this tag:

Table 5. Action panel tag attributes

Attribute Description

type Specifies the type of data to display. Must be panel-action.

format Specifies the format to use in displaying policies in the panel. Can be horiz
or vert. Default is vert.

The following example shows how to use the action panel tag in a display page.
<html>
<head>
<title>My Operator View</title>
<!-- <!--property:policy=MyView --> -->
<!-- <!--property:DefaultClusterName=NCICLUSTER_02 --> -->
</head>
<body>
<!--showdata:

36 Netcool/Impact: Operator View Guide

type="panel-action"
format="horiz"

-->
</body>
</html>

Information groups panel tag
You use the information groups panel tag to display the information groups panel
in an operator view.

You can use this tag in basic display pages such as those created with the GUI. For
advanced operator views, you can freely format and display data using the
orgnodes tag. For more information about orgnodes tag, see “OrgNodes tag” on
page 44.

The information groups panel tag has the following syntax:
<!--showdata:

type=orgnodes
format=format
var=groupname

-->

Table 6 describes the syntax attributes for this tag:

Table 6. Information groups panel tag attributes

Attribute Description

type Specifies the type of data to display. It must be orgnodes.

format Specifies the format to use in displaying data in the panel. It can be tabbed
or table. Default is table.

var Specifies the name of the information group to display.

The following example shows how to use the information groups panel tag in a
display page.
<html>
<head>
<title>My Operator View</title>
<!-- <!--property:policy="MyView" --> -->
<!-- <!--property:DefaultClusterName="NCICLUSTER_02" --> -->
</head>
<body>
<!--showdata:

type="orgnodes"
format="tabbed"
var="InfoGroupAdmins"

-->
</body>
</html>

In this example, the information groups panel is displayed in the tab delimited
format and the name of the group when created in the GUI is Admins. The GUI
adds the InfoGroup prefix when it creates the operator view policy.

Chapter 4. Working with basic smart tags 37

38 Netcool/Impact: Operator View Guide

Chapter 5. Working with advanced smart tags

Advanced tags are a type of smart tag that you use to format and display data
event data and Impact data in the operator view.

You use advanced tags to display data that is stored in variables in the context of
the operator view policy. This data can be a scalar value, a character-delimited list
of values or a set of data items returned by a function such as GetByFilter or
GetByKey. All the advanced tags are of tagtype showdata.

For more information about advanced smart tags, see “Scalar tag,” “List tag” on
page 41, and “OrgNodes tag” on page 44.

Scalar tag
You use the scalar tag to display the value of a scalar variable (for example, a
number, Boolean, or string) that is set by an operator view policy. This value is set
in the policy using the policy language assignment syntax.

Before you insert a scalar tag into the display page, you must make sure that the
value of the corresponding variable is set in the policy in string format. This
ensures that the value is displayed correctly in the operator view. You can convert
any integer, float, or Boolean value to string format within the policy using the
String function.

You use the scalar tag to specify a format for the string of plain, string, URL or
action.

The plain format displays the scalar value in the operator view as plain text.

The string format displays the scalar value in the operator view inside an HTML
span element. You can set the id, class, style and title of the span using
attributes in the smart tag. You can also specify that the scalar value is a URL that
must be displayed in the operator view as a link using the autourl attribute.

The url format displays the scalar value as a link inside an HTML span element.
You can set the href and target attributes of the link using attributes in the smart
tag. You can also set the id, class, style and title of the span.

The action format displays the scalar value as a link or button that opens another
operator view. You specify the name of the operator view using the policy
attribute in the smart tag and specify runtime parameters for the view using the
params attribute.

The scalar tag has the following syntax:
<!--showdata:

var=variable
type=scalar
format=plain|string|url|action

// Core Attributes
id=id
class=classname
style=styletext

© Copyright IBM Corp. 2006, 2014 39

title=tooltip
default=msg
cacheread=true|false
cachewrite=true|false

// format=string only
autourl=true|false

// format=url only
url=url
target=target

// format=action only
policy=policyname
target=targetname
params=var0,var1...
isbutton=true|false

// AJAX-specific attributes (all formats except format="plain")
update_interval=seconds
update_option="link|button|none"
update_delay=seconds
update_policy=policyname
update_tag=tagname1, tagname2, ...
update_params=paramname1, paramname2, ...
update_precall=functionname
update_postcall=functionname
update_effect=effectname
-->

Attributes used in scalar tag

This following attributes can be used in scalar tags:

Table 7. List of attributes that can be used in scalar tag

Attribute Short description

autourl Boolean type

cacheread Boolean type

cachewrite Boolean type

class String type

default String type

id String. This attribute is required if the value of format
attribute in the smart tag is string, url or action.
Otherwise, optional.

isbutton Boolean type

params String type

policy String type

style String type

target String type

title String type

update_interval Integer type

update_option String type (either "link," "button," or "none")

update_delay Integer type

update_label String type

update_policy String type

40 Netcool/Impact: Operator View Guide

Table 7. List of attributes that can be used in scalar tag (continued)

Attribute Short description

update_tags and
*_override_tags

Comma delimited list of strings that refer to web page
element IDs to update through AJAX calls

update_params Comma delimited list of Strings that refer to web page
element IDs

update_precall and
update_postcall

String type. This attribute is the name of an available
JavaScript function

update_effect String type. This attribute refers to one of the available
effect types listed below

url String type

var, type, and format The var, type and format attributes are common attributes
that are shared by all the advanced smart tags. These
attributes are always required. For information about var,
type and format, see “Common attributes” on page 29.

For more information about the attributes that are used in scalar tags, see
“Attributes used in advanced smart tags” on page 47.

List tag
You use the list tag to display a list of values that are set by an operator view
policy. The operator view displays the list as a formatted table. The list is specified
in the policy using the policy language assignment syntax.

The syntax for a valid list of values is as follows:
item1,item2,item3 ... itemn

Where item is a string value. You must observe the rules for using white space and
escape characters as described in “White space” on page 28 and “Escape
characters” on page 28.

Before you insert a list tag into the display page, you must make sure that the
value of the corresponding variable is set in the policy in string format. This
ensures that the value is displayed correctly in the operator view. Using the String
function, you can convert any integer, float, or Boolean value to string format
within the policy.

The follow example shows how to assign a list of values to a variable in the
operator view policy. In this example, the list contains four items. White space is
not used to separate items in the list.
MyList = "one,two,three,four";

By default, the operator view displays the items in the list as a formatted table,
where each item is a cell in a table row and there is one cell per row. You can
change the orientation of the cells in the table using the orientation attribute in
the list tag.

You use the list tag to specify a format of string, URL or action for the values in
the table cells.

The string format displays each value in the list inside an HTML td element. You
can set the id, class, style and title of the td using attributes in the list tag. You

Chapter 5. Working with advanced smart tags 41

can also specify that each value is a URL that must be displayed in the operator
view as a link using the autourl attribute.

The url format displays each value in the list as a link inside an HTML id
element. You can set the href and target attributes of the link using attributes in
the smart tag. You can also set the id, class, style and title of the span.

The action format displays each value in the list as a link or button that opens
another operator view. You specify the name of the operator view using the policy
or policy_index attribute in the smart tag, and specify runtime parameters for the
view using the params or params_index attribute.

The list tag has the following syntax:
<!--showdata:

var=variable
type=list
format=string|url|action

// Core Attributes
id=id
class=classname
style=styletext
title=tooltip

// common
default=msg
delimiter=delimiter
cacheread=true|false
cachewrite=true|false
orientation=horiz|vert
cellclass=classname0,classname1...
cellclass_index=classname
cellstyle=styletext0,styletext1...
cellstyle_index=classname

// string only
autourl=true|false

// format=url only
url=url
url_index=url
target=target
target_index=target

// format=action only
isbutton=true|false
isbutton_index=true|false
policy=policyname
policy_index=policyname // 1 or the other - policy/url
url=url
url_index=url
target=target
target_index=target_window
params=var0,var1...
params_index=var0,var1...

// AJAX-specific attributes
update_interval=seconds
update_option="link|button|none"
update_delay=seconds
update_policy=policyname
update_tag=tagname1, tagname2, ...
update_params=paramname1, paramname2, ...

42 Netcool/Impact: Operator View Guide

update_precall=functionname
update_postcall=functionname
update_effect=effectname
-->

Attributes used in list tag

This following attributes can be used in list tags:

Table 8. List of attributes that can be used in list tags

Attribute Short description

autourl String type

cacheread Boolean type

cachewrite Boolean type

cellclass String or list type. Indexable, index replacement

cellstyle String or list type. Indexable, index replacement

class String type

default String type

delimiter String type. The default is the comma (,) character

id String type

isbutton Boolean type. Indexable, default replacement.

orientation String type

params String type. Indexable, augmentation

policy String type. Indexable, default replacement

style String type

target String type. Indexable, default replacement

title String type

update_interval Integer type

update_option String type (either "link," "button," or "none")

update_delay Integer type

update_label String type

update_policy String type

update_tags and
*_override_tags

Comma delimited list of strings that refer to Web page
element IDs to update through AJAX calls.

update_params Comma delimited list of Strings that refer to Web page
element IDs.

update_precall and
update_postcall

String type. The name of an available JavaScript function.

update_effect String type. This refers to one of the available effect types
listed below.

url String type

var, type, and format The var, type and format attributes are common attributes
that are shared by all the advanced smart tags. These
attributes are always required. For information about var,
type and format, see “Common attributes” on page 29.

Chapter 5. Working with advanced smart tags 43

For more information about the attributes used in list tags, see “Attributes used in
advanced smart tags” on page 47.

OrgNodes tag
You use the orgnodes tag to display a set of data items retrieved from a data
source by the operator view policy.

The operator view displays the data items as a custom table or in per item format.
The data items are retrieved in the policy using the GetByFilter, GetByKey or
DirectSQL functions, or using another function that returns a set of data items.

This is an example of a statement in a policy that retrieves a set of data items:
MyContacts = GetByFilter("Contacts", "Location=’New York’", False);

When you insert an orgnodes tag into an operator view display page, you specify
the name of the variable that stores the data items (in this example, MyContacts), as
the value of the var attribute.

By default, the operator view displays the items in the list as a custom table, where
each data item occupies a row in the table and each data item field occupies a cell.
In addition, you can display the items in per item format, where each data item
occupies a separate table. You also use the orgnodes smart tag to change many
parameters that affect how the data items are displayed.

Table 9 shows the formats you can use to display the field values in the data items.

Table 9. OrgNodes tag formats

Format Description

Custom Table When you display the field values as a custom table, they are displayed in
the resulting operator view in a horizontal grid form, where the column
headers are the names of the fields and each row represents a data item.
You can optionally append an action column to the right of the custom
table. This column can be used to start one or more policies that are related
to the data item.

Per Item When you display the field values in per item format, they are displayed
in the resulting operator view in a vertical grid form, where each field
value in a data item appears in a separate row. You can optionally append
an action row after the last field of each data item. This row can be used to
start one or more policies that are related to the data item.

The orgnodes tag has the following syntax:
<!--showdata: var=variable

type=orgnodes
format=customtable|peritem

// core html tag attributes
id=id
class=classname
style=styletext
title=tooltip

// general
default=msg
headerclass=classname0,classname1...
headerclass_col=classname
headerclass_field=classname

44 Netcool/Impact: Operator View Guide

headerstyle=styletext0,styletext1...
headerstyle_col=styletext
headerstyle_field=styletext
rowclass=classname0,classname1...
rowclass_row=classname
rowstyle=styletext0,styletext1...
cellclass=classname0,classname1...
cellclass_col=classname
cellclass_field=classname
cellstyle=styletext0,styletext1...
cellstyle_col=styletext
cellstyle_field=styletext
rowcellclass_row_field=classname
rowcellstyle_row_field=styletext
rowcelltext_row_field=text
showheader=true|false
autourl=true|false
includes=field0,field1,...
excludes=field0,field1,...
aliases=field0,alias0,field1,alias1,...,fieldN,aliasN
action_align=left|right (top|bottom also for peritem)\
action_count=# (def:0)
action_label=[String]
action_label_[actionidx]=[String]
action_hiderow=true|false
action_hiderow_[row]=true|false
action_hide=true|false
action_hide_[actionidx]=true|false
action_disabled=true|false
action_disabled_[actionidx]=true|false
action_isbutton=true|false
action_isbutton_[actionidx]=true|false
action_policy=[policyname]
action_policy_[actionidx]=[policyname]
action_url=[url]
action_url_[actionidx]=[url]
action_target=[target]
action_target_[actionidx]=[target]
action_fieldparams=[field0],[field1],...,[fieldN]
action_fieldparams_[actionidx]=[field0],[field1],...,[fieldN]
action_varparams=[var0],[var1],...,[varN]
action_varparams_[actionidx]=[var0],[var1],...,[varN]
action_class=[classname0],[classname1],...,[classnameN]
action_class_[actionidx]=[classname]
action_class_[actionidx]_[row]=[classname]
action_style=[styletext0],[styletext1],...,[styletextN]
action_style_[actionidx]=[styletext]
action_style_[actionidx]_[row]=[styletext]

// peritem only attributes
spacewidth=[width]
spaceheight=[height]
grouping=[1-N]
reversepair=true|false
orientation=horiz|vert
label_text=[label_text]
label_text_[row]=[label_text]
label_show=true|false
label_show_[row]=true|false
label_class=[classname]
label_class_[row]=[classname]
label_style=[styletext]
label_style_[row]=[styletext]
label_align=top|bottom|left|right
label_align_[row]=top|bottom|left|right

// AJAX-specific attributes

Chapter 5. Working with advanced smart tags 45

update_interval=seconds
update_option="link|button|none"
update_delay=seconds
update_policy=policyname
update_tag=tagname1, tagname2, ...
update_params=paramname1, paramname2, ...
update_precall=functionname
update_postcall=functionname
update_effect=effectname
-->

Attributes used in orgnodes tag

This following attributes can be used in orgnodes tags:

Table 10. List of attributes that can be used in orgnodes tags

Attribute Short description

action_align String type

action_count Integer type

action_label String type. Indexable

action_hiderow String type. Indexable

action_hide Boolean type. Indexable

action_disabled Boolean type. Indexable

action_isbutton Boolean type. Indexable

action_policy String type. Indexable

action_url String type. Indexable

action_target String type. The supported values are _self, _top, _parent
and _new. Indexable

action_fieldparams String type. Indexable

action_varparams String type. Indexable, augmentation

action_class String type. Indexable

action_style String type. Indexable

aliases String type

autourl Boolean type

cellclass String or list

cellstyle String or list

class String type

default String type

excludes String type

grouping Integer type

headerclass String or list. Indexable, index replacement, field
replacement

headerstyle String or list. Indexable, index replacement, field
replacement

id String type

includes String type

label_text String type. Indexable

label_show Boolean type

46 Netcool/Impact: Operator View Guide

Table 10. List of attributes that can be used in orgnodes tags (continued)

Attribute Short description

label_class String type. Indexable

label_style String type. Indexable

label_align String type. Indexable

orientation String type

reversepair Boolean type

rowcellclass String type. Indexable, index field replacement

rowcellstyle String type. Indexable, index field replacement

rowcelltext String type. Indexable, index field replacement

rowclass String or list. Indexable, index replacement

rowstyle String or list. Indexable, index replacement

showheader Boolean type

spacewidth Integer type

spaceheight Integer type

style String type

title String type

update_interval Integer type

update_option String type (either "link," "button," or "none")

update_delay Integer type

update_label String type

update_policy String type

update_tags and
*_override_tags

Comma delimited list of strings that refer to Web page
element IDs to update through AJAX calls.

update_params Comma delimited list of Strings that refer to Web page
element IDs.

update_precall and
update_postcall

String type. This is the name of an available JavaScript
function.

update_effect String type. This refers to one of the available effect types
listed below.

var, type, and format The var, type and format attributes are common attributes
that are shared by all the advanced smart tags. These
attributes are always required. For information about var,
type and format, see “Common attributes” on page 29.

For more information about the attributes used in list tags, see “Attributes used in
advanced smart tags.”

Attributes used in advanced smart tags
This section contains attributes that are used in advanced smart tags.

action_align attribute
This attribute specifies where the row of available actions for each data item is
displayed.

Chapter 5. Working with advanced smart tags 47

For custom tables, possible values are left and right. For per item tables, possible
values are top, bottom, left and right.

Table 11 shows the properties of the action_align attribute.

Table 11. action_align attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default For custom tables, the default is right. For per item tables, the default
is bottom.

Overridable Yes

Indexable No

The following example shows how to specify the location of the row of available
actions.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_count=1
action_policy="MyOperatorViewPolicy"
action_align="right"
action_label="Click here"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->

48 Netcool/Impact: Operator View Guide

<td><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
</table>

action_class attribute
This attribute specifies the value of the class attribute in the HTML td element
that contains the action.

The class attribute identifies the td as one of a class of elements in the HTML
DOM. You can use this attribute to format the td with CSS or to manipulate it with
DHTML and JavaScript code.

To specify this value for all actions, you can assign a list of class names to the
action_class attribute. You can also specify the value for specific actions, by
appending an index value starting with zero that identifies the action to the
attribute name (for example, action_class_0, action_class_1, and so on). To
specify the value by action and by row, append the action index and then the row
index values to the attribute name (for example, action_class_0_0,
action_class_0_1, and so on.).

Table 12 shows the properties of the action_class attribute.

Table 12. action_class attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

The following example shows how to set the action_class attribute in the HTML
table element that contains the data items.

Chapter 5. Working with advanced smart tags 49

<!--showdata:
var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_class="action"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td class="action"><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td class="action"><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td class="action"><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here

50 Netcool/Impact: Operator View Guide

</td>
</tr></table></td>
</tr>
</table>

action_count attribute
This attribute specifies the number of actions that are displayed with each data
item in the HTML table.

You must specify a value for this attribute in order for actions to be displayed.

Table 13 shows the properties of the action_count attribute.

Table 13. action_count attribute properties

Property Description

Type Integer

Applies To Orgnodes tag

Required Required in order to display any actions

Default 0

Overridable Yes

Indexable No

The following example shows how to set the action_count attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_label="Click here"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>
Click here

</td>
</tr></table></td>

Chapter 5. Working with advanced smart tags 51

</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
</table>

action_disabled attribute
This attribute specifies that an action associated with all rows in a table is
displayed, but disabled.

You specify the action to disable by appending an index value starting with zero
that identifies it ot the attribute name (for example, action_disabled_0,
action_disabled_1, and so on).

Table 14 shows the properties of the action_disabled attribute.

Table 14. action_disabled attribute properties

Property Description

Type Boolean

Applies To Orgnodes tag

Required Optional

Default false

Overridable Yes

Indexable Yes

The following example shows how to set the action_disabled attribute in the
HTML table element that contains the data items.

52 Netcool/Impact: Operator View Guide

<!--showdata:
var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_disabled_0="true"

-->

action_fieldparams attribute
This attribute specifies a list of fields in the HTML table whose values are sent to
the action policy or URL as a set of name/value pairs when a user clicks an action.

The values are sent as form variables using the HTTP method POST. You can
handle an incoming form variable in the action policy by referencing its name with
the @ symbol prefixed to it in the same manner that you handle fields in incoming
events.

To specify a list of fields for all actions, you assign the list to the
action_fieldparams attribute. To specify a list for a specific action, append an
index value starting with zero that identifies the action to the attribute name (for
example, action_fieldparams_0, action_fieldparams_1, and so on).

Table 15 shows the properties of the action_fieldparams attribute.

Table 15. action_fieldparams attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

The following example shows how to set the action_fieldparams attribute in the
HTML table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_fieldparams="Last"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>

Chapter 5. Working with advanced smart tags 53

<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="hidden" name="Last" value="Abduallah">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="hidden" name="Last" value="Du">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="hidden" name="Last" value="Oalaleye">
</form>

Click here
</td>
</tr></table></td>
</tr>
</table>

The following policy segment shows how to handle the incoming form parameter
and how to print its value to the policy log.
// Field name was "Last," so policy variable name is "@Last"

Log("Incoming last name: " + @Last);

action_hide attribute
This attribute specifies whether to hide specific actions associated with all rows in
the HTML table.

54 Netcool/Impact: Operator View Guide

To hide all actions, you assign a value of true to the action_hide attribute. To hide
a specific action, append an index value starting with zero that identifies the action
to the attribute name (for example, action_hide_0, action_hide_1, and so on).

Table 16. action_hide attribute properties

Property Description

Type Boolean

Applies To OrgNodes tag

Required Optional

Default false

Overridable Yes

Indexable Yes

The following example shows how to set the action_hide attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_hide="true"

-->

action_hiderow attribute
This attribute specifies whether to hide the actions associated with all rows or a
specified row in the HTML table.

It is useful in operator view policies where you want to hide actions based on the
contents of the associated rows using conditions determined during policy
runtime. To hide actions for all rows, you assign a value of true to the
action_hiderow attribute. To hide actions for a specific row, append an index value
starting with zero that identifies it to the attribute name (for example,
action_hiderow_0, action_hiderow_1, and so on).

Table 17 shows the properties of the action_hiderow attribute.

Table 17. action_hiderow attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default false

Overridable Yes

Indexable Yes

The following example shows how to set the action_hiderow attribute in the
HTML table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"

Chapter 5. Working with advanced smart tags 55

action_count="1"
action_policy="MyOperatorViewPolicy"
action_hiderow="true"

-->

action_isbutton attribute
This attribute specifies that all actions or a specific action associated with rows in
the HTML table appears as buttons rather than text links.

To display buttons for all actions, you assign a value of true to the
action_isbutton attribute. To display a button for a specific action, append an
index value starting with zero that identifies the action to the attribute name (for
example, action_isbutton_0, action_isbutton_1, and so on).

Table 18 shows the properties of the action_isbutton attribute.

Table 18. action_isbutton attribute properties

Property Description

Type Boolean

Applies To Orgodes tag

Required Optional

Default false

Overridable Yes

Indexable Yes

The following example shows how to set the action_isbutton attribute in the
HTML table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_isbutton="true"

-->

When this tag is parsed this tag, it returns the following HTML output to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="submit" value="Click here"></form>

56 Netcool/Impact: Operator View Guide

</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="submit" value="Click here"></form>
</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="submit" value="Click here"></form>
</td>
</tr></table></td>
</tr>
</table>

action_label attribute
This attribute specifies the string text that appears in the HTML link or button that
allows a user to do an action that is associated with data items that appear in the
HTML table.

If the table contains more than one action, you can specify a different label for each
action by appending an index value starting with zero that identifies it to the
attribute name (for example, action_label_0, action_label_1, and so on).

Table 19 shows the properties of the action_label attribute.

Table 19. action_label attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default Null

Overridable Yes

Indexable Yes

The following example shows how to set the action_label attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"

Chapter 5. Working with advanced smart tags 57

format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_label="Click here"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone. The specified action
label appears in the link text of each action.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
</table>

58 Netcool/Impact: Operator View Guide

action_policy attribute
This attribute specifies which operator view you want to open as a result of the
action, where the operator view is identified using a truncated name for the
associated policy.

You must name operator view policies using the convention Opview_viewname,
where viewname is the name of the operator view. When you specify an operator
view using the action_policy attribute, you use only the viewname portion of the
policy name.

To specify an operator view to display for all actions, you assign the name to the
action_policy attribute. To specify a policy for a specific action, append an index
value starting with zero that identifies the action to the attribute name (for
example, action_policy_0, action_policy_1, and so on).

Table 20 shows the properties of the action_policy attribute.

Table 20. action_policy attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default Policy associated with the operator view currently displayed

Overridable Yes

Indexable Yes

The following example shows how to set the action_policy attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_label="Click here"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"

Chapter 5. Working with advanced smart tags 59

action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>
Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
</table>

action_style attribute
This attribute specifies the value of the style attribute in the HTML td element
that contains the action.

The style attribute contains CSS information that applies to the td. You can use
this attribute to format the td with CSS.

To specify this value for all actions, you can assign a list of style values to the
action_style attribute. You can also specify the value for specific actions, by
appending an index value starting with zero that identifies the action to the
attribute name (for example, action_style_0, action_style_1, and so on). To
specify the value by action and by row, append the action index and then the row
index values to the attribute name (for example, action_style_0_0,
action_style_0_1, and so on).

Table 21 shows the properties of the action_style attribute.

Table 21. action_style attribute properties

Property Description

Type String

Applies To Orgnodes tag

60 Netcool/Impact: Operator View Guide

Table 21. action_style attribute properties (continued)

Property Description

Required Optional

Default Value of the var attribute in the smart tag

Overridable Yes

Indexable Yes

The following example shows how to set the action_style attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_style="font-weight:bold"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td style="font-weight:bold"><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td style="font-weight:bold"><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>

Chapter 5. Working with advanced smart tags 61

<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td style="font-weight:bold"><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
</form>

Click here
</td>
</tr></table></td>
</tr>
</table>

action_target attribute
This attribute specifies the target window where the operator view or URL
associated with an action is displayed.

To specify a target for all actions, you assign the window name to the
action_target attribute. To specify a target for a specific action, append an index
value starting with zero that identifies the action to the attribute name (for
example, action_target_0, action_target_1, and so on).

Table 22 shows the properties of the action_target attribute.

Table 22. action_target attribute properties

Property Description

Type String. Values of _self, _top, _parent and _new are supported.

Applies To Orgnodes tag

Required Optional.

Default The default is the current window.

Overridable Yes

Indexable Yes

The following example shows how to set the action_target attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_policy="MyOperatorViewPolicy"
action_label="Click here"
action_target="_new"

-->

action_url attribute
This attribute specifies which URL you want to open as a result of the action.

To specify a URL to display for all actions, you assign the name to the action_url
attribute. To specify a URL for a specific action, append an index value starting
with zero that identifies the action to the attribute name (for example,
action_url_0, action_url_1, and so on).

62 Netcool/Impact: Operator View Guide

Table 23 shows the properties of the action_url attribute.

Table 23. action_url attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

The following example shows how to set the action_url attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
action_count="1"
action_url="http://www.example.com"
action_label="Click here"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="http://www.example.com"></form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="http://www.example.com">
</form>

Click here

Chapter 5. Working with advanced smart tags 63

</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="http://www.example.com">
</form>

Click here
</td>
</tr></table></td>
</tr>
</table>

action_varparams attribute
This attribute specifies a list of policy variables whose values are sent to the action
policy or URL as a set of name/value pairs when a user clicks an action.

The policy variables are set by the operator view policy at policy runtime. The
values are sent as form variables using the HTTP method POST. You can handle an
incoming form variable in the action policy by referencing its name with the @
symbol prefixed to it in the same manner that you handle fields in incoming
events.

To specify a list of policy variables for all actions, you assign the list to the
action_varparams attribute. To specify a list for a specific action, append an index
value starting with zero that identifies the action to the attribute name (for
example, action_varparams_0, action_varparams_1, and so on).

Table 24 shows the properties of the action_varparams attribute.

Table 24. action_varparams attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

Index type Augmentation

The following example shows how to set the action_varparams attribute in the
HTML table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"

64 Netcool/Impact: Operator View Guide

action_count="1"
action_policy="MyOperatorViewPolicy"
action_varparams="Location"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone. The value of the
Location variable set in the policy is New York.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_0" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="hidden" name="Location" value="New York">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_1" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="hidden" name="Location" value="New York">
</form>

Click here
</td>
</tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row -->
<td><table><tr>
<form id="MyContacts_form_0_2" name="MyContacts_form_0_0"
method="post"
action="/opview/displays/NCICLUSTER-MyOperatorViewPolicy.html">
<input type="hidden" name="Location" value="New York">
</form>

Click here

Chapter 5. Working with advanced smart tags 65

</td>
</tr></table></td>
</tr>
</table>

The following policy segment shows how to handle the incoming form parameter
and how to print its value to the policy log.
// Field name was "Location," so policy variable name is "@Location"

Log("Incoming last name: " + @Location);

aliases attribute
This attribute allows you to specify alternate field names for fields in the data
items displayed in the HTML table.

The syntax of this attribute is as follows:
field0,alias0,[field1],[alias1]...

Table 25 shows the properties of the aliases attribute.

Table 25. aliases attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable No

The following example shows how to specify a list of alternative field names.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
aliases="Email,E-mail,Phone,Telephone"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone. The names of the
Email and Phone fields are replaced by their aliases in the heading row of the table.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>E-mail</th>
<th>Telephone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>

66 Netcool/Impact: Operator View Guide

<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

autourl attribute
This attribute specifies whether to automatically format URL text as a link using
the HTML a tag. Possible values are true and false.

If the value of the attribute is set to true, the tag value is read to check if it is in
valid URL format. If the format is valid, an a element is returned in the HTML
output, where the value of the href attribute is the URL. This attribute is
recognized only if the value of the format attribute is string.

Note: For different tags different values are read to check if they are in valid URL
format:
v scalar tag - the scalar value must be a string in valid URL format.
v list tag - each value in the list must be a string in valid URL format.
v orgnodes tag - the text must be in valid URL format.

Table 26 shows the properties of the autourl attribute.

Table 26. autourl attribute properties

Property Description

Type Boolean (scalar tag, orgnodes tag), String (list tag)

Applies To Scalar tag, list tag, orgnodes tag

Required Optional

Default None (scalar tag, list tag), true (orgnodes tag)

Overridable Yes

Indexable No

Example of using autourl attribute in scalar tag

The following example shows how to format a URL string as a link in the resulting
HTML output.
<!--showdata:

var="MyString"
type="scalar"
format="string"
autourl="true"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyString variable is http://www.example.com.

Chapter 5. Working with advanced smart tags 67

http://www.example.com

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using autourl attribute in list tag

The following example shows how to format URL strings as links in the resulting
HTML output.
<!--showdata:

var="MyList"
type="list"
format="string"
autourl="true"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyString variable is http://
www.example.com,http://www.ibm.com.
<table>
<tr><td>
http://www.example.com
</td><tr>
<tr><td>
http://www.ibm.com
</td><tr>
</table>

Example of using autourl attribute in orgnodes tag

The following example shows how to format URL strings as links in the resulting
HTML output.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="orgnodes"
autourl="true"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and URL. The URL field
contains a formatted URL string.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>URL</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>
http://www.example.com/~pabduallah
/td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>

68 Netcool/Impact: Operator View Guide

<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>
http://www.example.com/~mdu
/td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>
http://www.example.com/~joalaleye
/td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

cacheread attribute
This attribute specifies whether to read the value (list of values, in case of the list
tag) from the session cache.

Possible values are true and false. If no value (list of values, in case of the list
tag) for the corresponding variable is set in the operator view policy and no
default value is set in the smart tag, the session cache is checked and the cached
value (list of values, in case of the list tag) is returned if it was previously stored.

Table 27 shows the properties of the cacheread attribute.

Table 27. cacheread attribute properties

Property Description

Type Boolean

Applies To Scalar tag, list tag

Required Optional

Default None

Overridable Yes

Indexable No

Example of using cacheread attribute

The following example shows how to read the scalar value from the session cache.
<!--showdata:

var="MyString"
type="scalar"
format="string"
cacheread="true"

-->

You can use the same code to read the list of values from the session cache. You
need to change the value of the type property, which for a list tag is type="list".

cachewrite attribute
This attribute specifies whether to store the scalar value (or the list of values, in
case of the list tag) in the session cache.

Chapter 5. Working with advanced smart tags 69

Possible values are true and false. If no value (no list of values, in case of the list
tag) for the corresponding variable is set in the operator view policy and no
default value is set in the smart tag, the session cache is checked and the cached
value (list of values, in case of the list tag) is returned if it was previously stored.

Table 28 shows the properties of the cachewrite attribute.

Table 28. cachewrite attribute properties

Property Description

Type Boolean

Applies To Scalar tag, list tag

Required Optional

Default None

Overridable Yes

Indexable No

Example of using cachewrite attribute

The following example shows how to store the scalar value in the session cache.
<!--showdata:

var="MyString"
type="scalar"
format="string"
cachewrite="true"

-->

You can use the same code to store the list of values in the session cache. You need
to change the value of the type property, which for a list tag is type="list".

cellclass attribute
This attribute specifies the value of the class attribute in the HTML td elements in
the table that contain the list of values (data item field values, in case of orgnodes
tag).

This excludes any td elements that contain action links or buttons. The class
attribute identifies the td as one of a class of element in the HTML DOM. You can
use this attribute to format the td with CSS or to manipulate it with DHTML and
JavaScript code.

This attribute has the following syntax:
cellclass=classname
cellclass=classname0,classname1,classname2 ...

Where classname is the name of a DOM class.

The first supported syntax allows you to specify a single class for every td element
in the table. The second syntax allows you to specify a list of classes, where each
item in the list is associated with an individual td element (th element, in case of
orgnodes tag) in the order it appears in the table (in a row, in case of orgnodes
tag).

Note: If the number of td elements in the table exceeds the number of specified
classes, the list wraps back to the beginning.

70 Netcool/Impact: Operator View Guide

This attribute is recognized for all display formats.

Table 29 shows the properties of the cellclass attribute.

Table 29. cellclass attribute properties

Property Description

Type String or list

Applies To List tag, orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

Indexing Type Index Replacement (list tag), Default replacement (orgnodes tag)

Example of using cellclass attribute in list tag

The following example shows how to set the same class attribute for all the
HTML td elements that contain the list values.
<!--showdata:

var="MyList"
type="list"
format="string"
cellclass="cell-class"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyList variable is one,two,three,four.
<table>
<tr><td class="cell-class">one</td><tr>
<tr><td class="cell-class">two</td></tr>
<tr><td class="cell-class">three</td></tr>
<tr><td class="cell-class">four</td></tr>
</table>

The following example shows how to set different class attributes for all the
HTML td elements that contain each list value.
<!--showdata:

var="MyList"
type="list"
format="string"
cellclass="first,second,third,fourth"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyList variable is one,two,three,four.
<table>
<tr><td class="first">one</td><tr>
<tr><td class="second">two</td></tr>
<tr><td class="third">three</td></tr>
<tr><td class="fourth">four</td></tr>
</table>

Chapter 5. Working with advanced smart tags 71

Example of using cellclass attribute in orgnodes tag

The first supported syntax allows you to specify a single class for every td element
in the table. The second syntax allows you to specify a list of classes, where each
item in the list is associated with an individual th element in the order it appears
in a row. If the number of td elements in the table exceeds the number of specified
classes, the list wraps back to the beginning.

The following example shows how to set the same class attribute for all the
HTML td elements in the table that contains the data item field values.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
cellclass="cell-class"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td class="cell-class">Peter</td>
<td class="cell-class">Abduallah</td>
<td class="cell-class">pabduallah@example.com</td>
<td class="cell-class">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td class="cell-class">Mary</td>
<td class="cell-class">Du</td>
<td class="cell-class">mdu@example.com</td>
<td class="cell-class">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td class="cell-class">John</td>
<td class="cell-class">Oalaleye</td>
<td class="cell-class">joalaleye@example.com</td>
<td class="cell-class">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Here, the id and name attributes in the table element contain the name of the var
attribute in the smart tag as a default.

The following example shows how to set different class attributes for the HTML
td elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
cellclass="first,second,third,fourth"

-->

72 Netcool/Impact: Operator View Guide

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td class="first">Peter</td>
<td class="second">Abduallah</td>
<td class="third">pabduallah@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td class="first">Mary</td>
<td class="second">Du</td>
<td class="third">mdu@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td class="first">John</td>
<td class="second">Oalaleye</td>
<td class="third">joalaleye@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Indexed cellclass attribute in list tag
The cellclass attribute with an index used in a list tag allows you to specify or
override the class attribute individually for each item in the list.

The syntax of this attribute is as follows:
cellclass_index=class

Where index is an integer that identifies the item in the list and class is the name
of the DOM class. Index values for this attribute are zero-based.

This attribute is recognized for all display formats.

Example of using indexed cellclass attribute in list tag

The following example shows how to set the class attribute in the HTML td
elements that contain each list value.
<!--showdata:

var="MyList"
type="list"
format="string"
cellclass_0="row-1"
cellclass_1="row-2"
cellclass_2="row-3"
cellclass_3="row-4"

-->

When this tag is parsed this tag, it returns the following HTML output to the Web
browser, where the value of the MyList variable is one,two,three,four.

Chapter 5. Working with advanced smart tags 73

<table>
<tr><td class="row-1">one</td><tr>
<tr><td class="row-2">two</td></tr>
<tr><td class="row-3">three</td></tr>
<tr><td class="row-4">four</td></tr>
</table>

Indexed cellclass attribute in orgnodes tag
The cellclass attribute postfixed with an index used in a orgnodes tag allows you
to specify or override the class attribute for td elements in the table by column or
by field name.

The syntax of this attribute is as follows:
cellclass_col=class

or
cellclass_field=class

Where col is an integer that identifies the column that contains the td elements ,
field is the name of the data type field, and class is the name of the DOM class.
Index values for this attribute are zero-based.

Example of overriding the class attribute by column

The following example shows how to set the class attribute by column for the
HTML td elements in the table that contain the data item fields.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
cellclass_0="first"
cellclass_1="second"
cellclass_2="third"
cellclass_3="fourth"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td class="first">Peter</td>
<td class="second">Abduallah</td>
<td class="third">pabduallah@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td class="first">Mary</td>
<td class="second">Du</td>
<td class="third">mdu@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>

74 Netcool/Impact: Operator View Guide

<td class="first">John</td>
<td class="second">Oalaleye</td>
<td class="third">joalaleye@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Example of overriding the class attribute by field name

The following example shows how to set the class attribute by field name for the
HTML td elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
cellclass_First="first"
cellclass_Last="second"
cellclass_Email="third"
cellclass_Phone="fourth"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td class="first">Peter</td>
<td class="second">Abduallah</td>
<td class="third">pabduallah@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td class="first">Mary</td>
<td class="second">Du</td>
<td class="third">mdu@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td class="first">John</td>
<td class="second">Oalaleye</td>
<td class="third">joalaleye@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

cellstyle attribute used in list tag
This attribute specifies the value of the style attribute in the HTML td elements
that contain the list of values.

The style attribute contains CSS information that applies to the td. You can use
this attribute to format the td with CSS.

Chapter 5. Working with advanced smart tags 75

The syntax of this attribute is as follows:
cellstyle=style
cellstyle=style0,style1,style2 ...

Where style is a valid CSS style statement.

The first supported syntax allows you to specify a single style for every td element
in the table. The second syntax allows you to specify a list of styles, where each
item in the list is associated with an individual td element in the order it appears
in the table.

This attribute is recognized for all display formats.

Table 30 shows the properties of the cellstyle attribute.

Table 30. cellstyle attribute properties

Property Description

Type String or list

Applies To List tag

Required Optional

Default None

Overridable Yes

Indexable Yes

Index type Index Replacement

Example of using cellstyle attribute in list tag

The following example shows how to set the same style attribute for all the
HTML td elements that contain the list values.
<!--showdata:

var="MyList"
type="list"
format="string"
cellstyle="font-family: Verdana; color: red"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is one,two,three,four.
<table>
<tr><td style="font-family: Verdana; color: red">one</td><tr>
<tr><td style="font-family: Verdana; color: red">two</td></tr>
<tr><td style="font-family: Verdana; color: red">three</td></tr>
<tr><td style="font-family: Verdana; color: red">four</td></tr>
</table>

The following example shows how to set different style attributes for all the
HTML td elements that contain each list value.
<!--showdata:

var="MyList"
type="list"
format="string"
cellstyle="color: red,color: green,color: blue,color: black"

-->

76 Netcool/Impact: Operator View Guide

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is one,two,three,four.
<table>
<tr><td style="color: red">one</td><tr>
<tr><td style="color: green">two</td></tr>
<tr><td style="color: blue">three</td></tr>
<tr><td style="color: black">four</td></tr>
</table>

Indexed cellstyle attribute used in list tag
The cellstyle attribute postfixed with an index allows you to specify or override
the style attribute individually for each item in the list.

The syntax of this attribute is as follows:
cellstyle_index=style

Where index is an integer that identifies the item in the list and style is a valid
CSS style statement. Index values for this attribute are zero-based.

This attribute is recognized for all display formats.

Example of using indexed cellstyle attribute in list tag

The following example shows how to set the style attribute in the HTML td
elements that contain each list value.
<!--showdata:

var="MyList"
type="list"
format="string"
cellclass_0="color: red"
cellclass_1="color: green"
cellclass_2="color: blue"
cellclass_3="color: black"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is one,two,three,four.
<table>
<tr><td style="color: red">one</td><tr>
<tr><td style="color: green">two</td></tr>
<tr><td style="color: blue">three</td></tr>
<tr><td style="color: black">four</td></tr>
</table>

cellstyle attribute used in orgnodes tag
This attribute specifies the value of the style attribute in the HTML td elements in
the table that contain data item field values.

This excludes any td elements that contain action links or buttons. The style
attribute contains CSS information that applies to the td. You can use this attribute
to format the td with CSS.

The syntax of this attribute is as follows:
cellstyle=style
cellstyle=style0,style1,style2 ...

Where style is a valid CSS style statement.

Chapter 5. Working with advanced smart tags 77

The first supported syntax allows you to specify a single style for every td element
in the table. The second syntax allows you to specify a list of styles, where each
item in the list is associated with an individual td element in the order it appears
in a row. If the number of td elements in a row exceeds the number of specified
styles, the list wraps back to the beginning.

Table 31 shows the properties of the cellstyle attribute.

Table 31. cellstyle attribute properties

Property Description

Type String or list.

Applies To OrgNodes tag.

Required Optional.

Default None.

Overridable Yes.

Indexable Yes.

Indexing Type Index Replacement, field replacement.

Example of using cellstyle attribute in orgnodes tag

The following example shows how to set the same style attribute for all the
HTML td elements in the table that contains the data item field values.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
cellstyle="font-family: Verdana; font-weight: bold"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td style="font-family: Verdana; font-weight: bold">Peter</td>
<td style="font-family: Verdana; font-weight: bold">Abduallah</td>
<td style="font-family: Verdana; font-weight: bold">pabduallah@example.com</td>
<td style="font-family: Verdana; font-weight: bold">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td style="font-family: Verdana; font-weight: bold">Mary</td>
<td style="font-family: Verdana; font-weight: bold">Du</td>
<td style="font-family: Verdana; font-weight: bold">mdu@example.com</td>
<td style="font-family: Verdana; font-weight: bold">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td style="font-family: Verdana; font-weight: bold">John</td>
<td style="font-family: Verdana; font-weight: bold">Oalaleye</td>
<td style="font-family: Verdana; font-weight: bold">joalaleye@example.com</td>

78 Netcool/Impact: Operator View Guide

<td style="font-family: Verdana; font-weight: bold">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Here, the id and name attributes in the table element contain the name of the var
attribute in the smart tag as a default.

The following example shows how to set different style attributes for the HTML
td elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
cellstyle="color: red,color: blue,color: green,color: black"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td style="color: red">Peter</td>
<td style="color: blue">Abduallah</td>
<td style="color: green">pabduallah@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td style="color: red">Mary</td>
<td style="color: blue">Du</td>
<td style="color: green">mdu@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td style="color: red">John</td>
<td style="color: blue">Oalaleye</td>
<td style="color: green">joalaleye@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Indexed cellstyle attribute used in orgnodes tag
The cellstyle attribute with an index allows you to specify or override the style
attribute for td elements in the table by column or by field name.

The syntax of this attribute is as follows:
cellstyle_col=style

or
cellstyle_field=style

Chapter 5. Working with advanced smart tags 79

Where col is an integer that identifies the column that contains the td elements,
field is the name of the data type field and style is a valid CSS style statement.

Example of overriding the cellstyle attribute by column

The following example shows how to set the style attribute by column for the
HTML td elements in the table that contain the data item fields.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
cellstyle_0="color: red"
cellstyle_1="color: blue"
cellstyle_2="color: green"
cellstyle_3="color: black"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td style="color: red">Peter</td>
<td style="color: blue">Abduallah</td>
<td style="color: green">pabduallah@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td style="color: red">Mary</td>
<td style="color: green">Du</td>
<td style="color: blue">mdu@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td style="color: red">John</td>
<td style="color: green">Oalaleye</td>
<td style="color: blue">joalaleye@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Example of overriding the cellstyle attribute by field

The following example shows how to set the style attribute by field name for the
HTML td elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
cellstyle_First="color: red"
cellstyle_Last="color: blue"
cellstyle_Email="color: green"
cellstyle_Phone="color: black"

-->

80 Netcool/Impact: Operator View Guide

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td style="color: red">Peter</td>
<td style="color: blue">Abduallah</td>
<td style="color: green">pabduallah@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td style="color: red">Mary</td>
<td style="color: blue">Du</td>
<td style="color: green">mdu@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td style="color: red">John</td>
<td style="color: blue">Oalaleye</td>
<td style="color: green">joalaleye@example.com</td>
<td style="color: black">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

class attribute
This attribute specifies the value of the class attribute in the HTML table element
(span element, in case of scalar tag) that contains the data items (the scalar value,
in case of the scalar tag, and the list of values in case of the list tag).

The class attribute identifies the table (span, in case of scalar tag) as one of a class
of elements in the HTML DOM. You can use this attribute to format the operator
view with CSS or to manipulate the DOM with DHTML and JavaScript code.

Note: In case of a scalar tag, this attribute is only recognized if the value of the
format attribute is string, url or action. In case of a list tag, this attribute is
recognized for all display formats.

To specify the class value for individual cells in the table, see “cellclass attribute”
on page 70.

Table 32 shows the properties of the class attribute.

Table 32. class attribute properties

Property Description

Type String

Applies To Scalar tag, list tag, orgnodes tag

Required Optional

Default None

Overridable Yes

Chapter 5. Working with advanced smart tags 81

Table 32. class attribute properties (continued)

Property Description

Indexable No

Example of using class attribute in scalar tag

The following example shows how to set the class attribute in the HTML span
element that contains the scalar value.
<!--showdata:

var="MyString"
type="scalar"
format="string"
class="string-element"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyString variable is Testing.
Testing

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using class attribute in list tag

The following example shows how to set the class attribute in the HTML table
element that contains the list of values.
<!--showdata:

var="MyList"
type="list"
format="string"
class="table-class"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is one,two,three,four.
<table class="table-class">
<tr><td>one</td><tr>
<tr><td>two</td></tr>
<tr><td>three</td></tr>
<tr><td>four</td></tr>
</table>

Example of using class attribute in orgnodes tag

The following example shows how to set the class attribute in the HTML table
element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
class="table-class"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and Phone.

82 Netcool/Impact: Operator View Guide

<table id="table-element" name="table-element" class="table-class">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td><
td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

default attribute
This attribute specifies a default value that is displayed in the HTML output if no
value for the corresponding variable is set in the operator view policy.

For OrgNode tags, the default value appears as plain text in the resulting HTML
output. The operator view does not return a complete OrgNodes table when the
default value is displayed.

Table 33 shows the properties of the default attribute.

Table 33. default attribute properties

Property Description

Type String

Applies To Scalar tag, list tag, orgnode tag

Required Optional

Default None

Overridable Yes

Indexable No

Example of using default attribute in scalar tag

The following example shows how to specify a default value for the scalar tag.

Chapter 5. Working with advanced smart tags 83

<!--showdata:
var="MyString"
type="scalar"
format="string"
default="Default string goes here"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyString variable is not assigned in the policy.

Default string goes here

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using default attribute in list tag

The following example shows how to specify a list of default value for the list tag.
<!--showdata:

var="MyList"
type="list"
format="string"
default="four,three,two,one"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is not assigned in the policy.
<table>
<tr><td>four</td><tr>
<tr><td>three</td></tr>
<tr><td>two</td></tr>
<tr><td>one</td></tr>
</table>

Example of using default attribute in orgnodes tag

The following example shows how to specify a default value for the orgnodes tag.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
title="No data available."

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is not assigned in the policy.
No data available.

delimiter attribute
This attribute specifies the character used to separate items in the list.

Table 34 shows the properties of the delimiter attribute.

Table 34. delimiter attribute properties

Property Description

Type String

84 Netcool/Impact: Operator View Guide

Table 34. delimiter attribute properties (continued)

Property Description

Applies To List tag

Required Optional

Default The default is the comma character.

Overridable Yes

Indexable No

Example of using delimiter attribute

The following example shows how to specify a delimiter character for the list of
values that is displayed by the tag.
<!--showdata:

var="MyList"
type="list"
format="string"
delimiter="|"
default="four|three|two|one"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyList variable is not assigned in the policy.
<table>
<tr><td>four</td><tr>
<tr><td>three</td></tr>
<tr><td>two</td></tr>
<tr><td>one</td></tr>
</table>

excludes attribute
This attribute specifies which fields to exclude from the HTML table that contains
the data items.

You specify the fields as a comma-separated list of field names.

Table 35 shows the properties of the excludes attribute.

Table 35. excludes attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable No

The following example shows how to set the excludes attribute in the HTML table
element that contains the data items.

Chapter 5. Working with advanced smart tags 85

<!--showdata:
var="MyContacts"
type="orgnodes"
format="customtable"
excludes="Email"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone. The Email field
specified by the excludes attribute is not displayed.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

grouping attribute
For tables of format peritem, this attribute specifies the number of name/value
pairs displayed per row.

Table 36 shows the properties of the grouping attribute.

Table 36. grouping attribute properties

Property Description

Type Integer

Applies To Orgnodes tag

Required Optional

Default 1

Overridable Yes

Indexable No

The following example shows how to set the grouping attribute in the HTML table
element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"

86 Netcool/Impact: Operator View Guide

format="peritem"
orientation="horiz"
grouping="2"

-->

headerclass attribute
This attribute specifies the value of the class attribute in the HTML th elements
that contain the list of field names in the table.

The class attribute identifies the th as one of a class of elements in the HTML
DOM. You can use this attribute to format the th with CSS or to manipulate it with
DHTML and JavaScript code.

The syntax of this attribute is as follows:
headerclass=classname
headerclass=classname0,classname1,classname2 ...

Where classname is the name of a DOM class.

The first supported syntax allows you to specify a single class for every th element
in the table. The second syntax allows you to specify a list of classes, where each
item in the list is associated with an individual th element in the order it appears.
If the number of th elements in the table exceeds the number of specified classes,
the list wraps back to the beginning.

Table 37 shows the properties of the headerclass attribute.

Table 37. headerclass attribute properties

Property Description

Type String or list

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

Indexing Type Index replacement, field replacement

The following example shows how to set the same class attribute for all the
HTML th elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
headerclass="header-class"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th class="header-class">First</th>
<th class="header-class">Last</th>
<th class="header-class">Email</th>

Chapter 5. Working with advanced smart tags 87

<th class="header-class">Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Here, the id and name attributes in the table element contain the name of the var
attribute in the smart tag as a default.

The following example shows how to set different class attributes for all the
HTML th elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
headerclass="first,second,third,fourth"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th class="first">First</th>
<th class="second">Last</th>
<th class="third">Email</th>
<th class="fourth">Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>

88 Netcool/Impact: Operator View Guide

<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Indexed headerclass attribute
The headerclass attribute postfixed with an index allows you to specify or
override the class attribute for th elements in the table by column or by field
name.

The syntax of this attribute is as follows:
headerclass_col=class

or
headerclass_field=class

Where col is an integer that identifies the column that contains the th elements,
field is the name of the data type field, and class is the name of the DOM class.
Index values for this attribute are zero-based.

Example of overriding the class attribute by column

The following example shows how to set the class attribute by column for the
HTML th elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
headerclass_0="first"
headerclass_1="second"
headerclass_2="third"
headerclass_3="fourth"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th class="first">First</th>
<th class="second">Last</th>
<th class="third">Email</th>
<th class="fourth">Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>

Chapter 5. Working with advanced smart tags 89

<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Example of overriding the class attribute by field name

The following example shows how to set the class attribute by field name for the
HTML th elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
headerclass_First="first"
headerclass_Last="second"
headerclass_Email="third"
headerclass_Phone="fourth"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th class="first">First</th>
<th class="second">Last</th>
<th class="third">Email</th>
<th class="fourth">Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

headerstyle attribute
This attribute specifies the value of the style attribute in the HTML th elements
that contain the list of field names in the table.

The style attribute contains CSS information that applies to the td. You can use
this attribute to format the td with CSS.

The syntax of this attribute is as follows:

90 Netcool/Impact: Operator View Guide

headerstyle=style
headerstyle=style0,style1,style2 ...

Where style is a valid CSS style statement.

The first supported syntax allows you to specify a single style for every th element
in the table. The second syntax allows you to specify a list of styles, where each
item in the list is associated with an individual th element in the order it appears.
If the number of th elements in the table exceeds the number of specified styles,
the list wraps back to the beginning.

Table 38 shows the properties of the headerstyle attribute.

Table 38. headerstyle attribute properties

Property Description

Type String or list.

Applies To OrgNodes tag.

Required Optional.

Default None.

Overridable Yes.

Indexable Yes.

Indexing Type Index replacement, field replacement.

The following example shows how to set the same style attribute for all the
HTML th elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
headerstyle="font-family: Verdana; font-weight: bold"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th style="font-family: Verdana; font-weight: bold">First</th>
<th style="font-family: Verdana; font-weight: bold">Last</th>
<th style="font-family: Verdana; font-weight: bold">Email</th>
<th style="font-family: Verdana; font-weight: bold">Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>

Chapter 5. Working with advanced smart tags 91

<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Here, the id and name attributes in the table element contain the name of the var
attribute in the smart tag as a default.

The following example shows how to set different style attributes for the HTML
th elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
headerstyle="color: red,color: green,color: blue,color: black"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th style="color: red">First</th>
<th style="color: blue">Last</th>
<th style="color: green">Email</th>
<th style="color: black">Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Indexed headerstyle attribute
The headerstyle attribute postfixed with an index allows you to specify or
override the style attribute for th elements in the table by column or by field
name.

The syntax of this attribute is as follows:
headerstyle_col=class

or

92 Netcool/Impact: Operator View Guide

headerstyle_field=class

Where col is an integer that identifies the column that contains the th elements,
field is the name of the data type field, and style is a valid CSS style statement.
Index values for this attribute are zero-based.

Example of overriding the style attribute by column

The following example shows how to set the style attribute by column for the
HTML th elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
headerstyle_0="color: red"
headerstyle_1="color: blue"
headerstyle_2="color: green"
headerstyle_3="color: black"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th style="color: red">First</th>
<th style="color: blue">Last</th>
<th style="color: green">Email</th>
<th style="color: black">Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Example of overriding the style attribute by field name

The following example shows how to set the style attribute by field name for the
HTML th elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
headerstyle_First="color: red"

Chapter 5. Working with advanced smart tags 93

headerstyle_Last="color: blue"
headerstyle_Email="color: green"
headerstyle_Phone="color: black"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th style="color: red">First</th>
<th style="color: blue">Last</th>
<th style="color: green">Email</th>
<th style="color: black">Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

id attribute
This attribute specifies the value of the id and name attributes in the HTML span
element (table element, in case of list tag and orgnodes tag) that contains the
scalar value (the list of values, in case of list tag, and the data items, in case of
orgnodes tag).

The id attribute uniquely identifies the span (table, in case of list tag and orgnodes
tag) in the HTML document object model (DOM). You can use this attribute to
format the operator view with CSS or to manipulate the DOM with DHTML and
JavaScript code.

Note: In case of the scalar tag, this attribute is recognized only if the value of the
format attribute is string, url or action. In case of the list tag, this attribute is
recognized for all display formats.

Table 39 shows the properties of the id attribute.

Table 39. id attribute properties

Property Description

Type String

Applies To Scalar tag, list tag, orgnodes tag

94 Netcool/Impact: Operator View Guide

Table 39. id attribute properties (continued)

Property Description

Required Required if the value of format attribute in the smart tag is string, url
or action (in case of the scalar tag). Otherwise, optional.

Default Value of the var attribute in the smart tag.

Overridable Yes

Indexable No

Example of using id attribute in scalar tag

The following example shows how to set the id attribute in the HTML span
element that contains the scalar value.
<!--showdata:

var="MyString"
type="scalar"
format="string"
id="string-element"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyString variable is Testing.
Testing

Example of using id attribute in list tag

The following example shows how to set the id attribute in the HTML table
element that contains the list of values.
<!--showdata:

var="MyList"
type="list"
format="string"
id="table-element"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is one,two,three,four.
<table id="table-element" name="table-element">
<tr><td>one</td><tr>
<tr><td>two</td></tr>
<tr><td>three</td></tr>
<tr><td>four</td></tr>
</table>

Example of using id attribute in orgnodes tag

The following example shows how to set the id attribute in the HTML table
element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
id="table-element"

-->

Chapter 5. Working with advanced smart tags 95

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

includes attribute
This attribute specifies which fields to include in the HTML table that contains the
data items.

You specify the fields as a comma-separated list of field names. This attribute takes
precedence over the excludes attribute.

Table 40 shows the properties of the includes attribute.

Table 40. includes attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable No

The following example shows how to specify which fields are displayed in the
HTML table element that contains the data items.

96 Netcool/Impact: Operator View Guide

<!--showdata:
var="MyContacts"
type="orgnodes"
format="customtable"
includes="First,Last"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone. Only the First and
Last fields specified by the includes attribute are displayed.
<table>
<tr>
<th>First</th>
<th>Last</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

isbutton attribute
This attribute specifies whether to format the scalar value (list value, in case of the
list tag) inserted by the tag as a button instead of a link.

Possible values are true and false.

This attribute is only recognized if the value of the format attribute is action.

Table 41 shows the properties of the isbutton attribute.

Table 41. isbutton attribute properties

Property Description

Type Boolean

Applies To Scalar tag, list tag

Required Required if the value of the format attribute in the smart tag is action.
Otherwise, this is not recognized.

Default The default is false

Overridable Yes

Indexable Yes, in case of the list tag

Index type Default replacement

Chapter 5. Working with advanced smart tags 97

Example of using isbutton attribute in scalar tag

The following example shows how to format a value inserted by a scalar tag as a
button.
<!--showdata:

var="MyString"
type="scalar"
format="action"
policy="MY_POLICY_01"
isbutton="true"

-->

When this tag is parsed, it returns HTML output similar to the following to the
Web browser, where the value of the MyString variable is Click to launch view.

<form id="MyString_form_0_0" name="MyString_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_02.html">
<input type="submit" value="Click to launch view">
</form>

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using isbutton attribute in list tag

The following example shows how to format a value inserted by a list tag as a
button.
<!--showdata:

var="MyList"
type="list"
format="action"
policy="MY_POLICY_01"
isbutton="true"

-->

When this tag is parsed, it returns HTML output similar to the following example
to the Web browser, where the value of the MyList variable is First View,Second
View.
<table>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_01.html"></form>
<input type="submit" value="First View">
</td></tr>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_02.html">
</form>
<input type="submit" value="Second View">
</td></tr>
</table>

Indexed isbutton attribute
The isbutton attribute posfixed with an index can be used in a list tag.

It allows you to specify or override the button setting for each item in the list. Any
value that you specify using this attribute overrides the isbutton attribute as it
applies to the item.

98 Netcool/Impact: Operator View Guide

The syntax of this attribute is as follows:
isbutton_index=true|false

Where index is an integer that identifies the item in the list. Index values for this
attribute are zero-based.

This attribute is only recognized if the value of the format attribute is action.

The following example shows how to specify the button setting for a list of action
links.
<!--showdata:

var="MyList"
type="list"
format="action"
policy_0="MY_POLICY_01"
policy_1="MY_POLICY_02"
isbutton_0="true"
isbutton_1="false"

-->

When this tag is parsed this tag, it returns HTML output similar to this example to
the Web browser, where the value of the MyList variable is First View,Second
View.
<table>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_01.html">
</form>
<input type="submit" value="First View">
</td></tr>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_02.html">
</form>

Second View

</td></tr>
</table>

label_align attribute
For tables of format peritem, this attribute specifies the position of the label with
respect to the information in the data item fields.

Possible values are top, bottom, left and right.

Table 42 shows the properties of the label_align attribute.

Table 42. label_align attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default top

Overridable Yes

Indexable Yes

Chapter 5. Working with advanced smart tags 99

The following example shows how to set the label_align attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
label_align="top"

-->

label_class attribute
For tables of peritem format, this attribute specifies the value of the class attribute
in the HTML td element that contains the label.

The class attribute identifies the td as one of a class of elements in the HTML
DOM. You can use this attribute to format the td with CSS or to manipulate it with
DHTML and JavaScript code.

Table 43 shows the properties of the label_class attribute.

Table 43. label_class attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

The following example shows how to set the label_class attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="peritem"
label_class="label"

-->

label_show attribute
For tables of peritem format, this attribute specifies whether to display the label for
each data item.

By default, the label is the value of the data item key field. You can use this
attribute to suppress display of the label.

Table 44 shows the properties of the label_show attribute.

Table 44. label_show attribute properties

Property Description

Type Boolean

Applies To Orgnodes tag

Required Optional

Default true

100 Netcool/Impact: Operator View Guide

Table 44. label_show attribute properties (continued)

Property Description

Overridable Yes

Indexable No

The following example shows how to set the label_show attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="peritem"
label_show="false"

-->

label_style attribute
For tables of format peritem, this attribute specifies the value of the style attribute
in the HTML td element that contains the label.

The style attribute contains CSS information that applies to the td. You can use
this attribute to format the td with CSS.

Table 45 shows the properties of the label_style attribute.

Table 45. label_style attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

The following example shows how to set the label_style attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
label_style="font-weight: bold"

-->

label_text attribute
For tables of peritem format, this attribute specifies the contents of the label that is
displayed with each data item.

By default, the label is the value of the data item key field. You can use this
attribute to override the default value.

Table 46 on page 102 shows the properties of the label_text attribute.

Chapter 5. Working with advanced smart tags 101

Table 46. label_text attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default Value of the data item key field

Overridable Yes

Indexable Yes

The following example shows how to set the label_text attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="peritem"
label_text="Contact:"

-->

orientation attribute used in list tag
This attribute specifies whether the HTML table element that contains the list of
values is arranged in horizontal or vertical format.

Possible values are horiz and vert. The default value is vert. When the table is
arranged in horizontal format, each of the list values occupies a cell in a single
table row. When the table is arranged in vertical format, each of the list values
occupies a cell in its own row.

Table 47 shows the properties of the orientation attribute.

Table 47. orientation attribute properties

Property Description

Type String

Applies To List tag

Required Optional

Default The default is vert.

Overridable Yes

Indexable No

Example of using orientation attribute in list tag

The following example shows how to specify a horizontal orientation for the
HTML table element that displays the list of values.
<!--showdata:

var="MyList"
type="list"
format="string"
orientation="horiz"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is one,two,three,four.

102 Netcool/Impact: Operator View Guide

<table>
<tr><td>one</td><td>two</td><td>three</td><td>four</td></tr>
</table>

orientation attribute used in orgnodes tag
For tables of format peritem, this attribute specifies whether name/value pairs in
each data item are displayed horizontally, where the name of the field and the
value are in the same row, or vertically, where the name of the field appears as a
separate row.

Possible values are horiz and vert.

Table 48 shows the properties of the orientation attribute.

Table 48. orientation attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default vert

Overridable Yes

Indexable No

Example of using orientation attribute in orgnodes tag

The following example shows how to set the orientation attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="peritem"
orientation="vert"

-->

params attribute
This attribute specifies a list of variables whose values are to be sent to another
operator view as runtime parameters.

This attribute works with the policy attribute. Values for the runtime parameters
are set in the operator view policy.

Note: In case of the list tag, you can only use this attribute to specify the same
parameters for every operator view in the list. If you want to augment the
parameters for each item with additional parameters, you can use the
params_index attribute as described below.

This attribute is only recognized if the value of the format attribute is action.

Table 49 shows the properties of the params attribute.

Table 49. params attribute properties

Property Description

Type String

Chapter 5. Working with advanced smart tags 103

Table 49. params attribute properties (continued)

Property Description

Applies To Scalar tag, list tag

Required Required if the value of the format attribute in the smart tag is action.
Otherwise, this is not recognized.

Default None

Overrideable Yes

Indexable Yes, in case of the list tag

Index type Augmentation

Example of using params attribute in scalar tag

The following example shows how to specify runtime parameters in an operator
view policy.
First = "Sanjay";
Last = "Johnson";
Location = "Chicago";
Email = "555-5555";
Phone = "sjohnson@example.com";

The following example shows how to specify these same runtime parameters in
the scalar tag in an operator view display page.
<!--showdata:

var="MyString"
type="scalar"
format="action"
policy="MY_POLICY_01"
params="First,Last,Location,Email,Phone"

-->

When this tag is parsed, it returns HTML output similar to the following example
to the Web browser, where the value of the MyString variable is Click to launch
view. The runtime parameters are inserted into the HTML output as hidden input
elements, where the name of the element is the parameter name and the value is
the value assigned to them in the operator view policy.

<form id="MyString_form_0_0" name="MyString_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_01.html">
<input type="hidden" name="phone" value="555-5555">
<input type="hidden" name="email" value="sjohnson@example.com">
<input type="hidden" name="last" value="Johnson">
<input type="hidden" name="location" value="Chicago">
<input type="hidden" name="first" value="Sanjay">
</form>

Click to launch view

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using params attribute in list tag

The following example shows how to specify runtime parameters in an operator
view policy.

104 Netcool/Impact: Operator View Guide

First = "Sanjay";
Last = "Johnson";
Location = "Chicago";
Email = "555-5555";
Phone = "sjohnson@example.com";

The following example shows how to specify these same runtime parameters in
the list tag.
<!--showdata:

var="MyList"
type="list"
format="action"
policy="MY_POLICY_01"
params="First,Last,Location,Email,Phone"

-->

When this tag is parsed, it returns HTML output similar to the following example
to the Web browser, where the value of the MyList variable is First View,Second
View. The runtime parameters are inserted into the HTML output as hidden input
elements, where the name of the element is the parameter name and the value is
the value assigned to them in the operator view policy.
<table>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0" method="post"
action="/opview/displays/NCICLUSTER-MY_POLICY_01.html">
<input type="hidden" name="phone" value="555-5555">
<input type="hidden" name="email" value="sjohnson@example.com">
<input type="hidden" name="last" value="Johnson">
<input type="hidden" name="location" value="Chicago">
<input type="hidden" name="first" value="Sanjay">
</form>

First View

</td></tr>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0" method="post"
action="/opview/displays/NCICLUSTER-MY_POLICY_01.html">
<input type="hidden" name="phone" value="555-5555">
<input type="hidden" name="email" value="sjohnson@example.com">
<input type="hidden" name="last" value="Johnson">
<input type="hidden" name="location" value="Chicago">
<input type="hidden" name="first" value="Sanjay">
</form>

Second View

</td></tr>
</table>

Indexed params attribute
The params attribute postfixed with an index can be used in a list tag.

It allows you to augment the list of parameters passed to an operator view for
each item in the list. Any value that you specify using this attribute adds to the
parameters specified by the params attribute and does not override them.

The syntax of this attribute is as follows:
params_index=parameters

Where index is an integer that identifies the item in the list and parameters is the
URL. Index values for this attribute are zero-based.

Chapter 5. Working with advanced smart tags 105

This attribute is only recognized if the value of the format attribute is action.

The following example shows how to specify runtime parameters in an operator
view policy. This example specifies two sets of parameters. The first is a set of
basic parameters that are passed to every operator view in the list displayed by the
list tag. The second is a set of additional parameters that are passed only to the
second operator view in the list.
// Basic runtime parameters to pass to every operator view in the list

First = "Sanjay";
Last = "Johnson";
Location = "Chicago";

// Additional runtime parameters to pass to the second operator view
// in the list only

Email = "555-5555";
Phone = "sjohnson@example.com";

The following example shows how to specify the First, Last and Location
variables as default runtime parameters in the list tag. The example also shows
how to augment the parameters passed to the second operator view on the list
with the Email and Phone variables.
<!--showdata:

var="MyList"
type="list"
format="action"
policy_0="MY_POLICY_01"
policy_1="MY_POLICY_02"
params="First,Last,Location"
params_1="Email,Phone"

-->

When this tag is parsed, it returns HTML output similar to the following to the
Web browser, where the value of the MyList variable is First View,Second View.
The runtime parameters are inserted into the HTML output as hidden input
elements, where the name of the element is the parameter name and the value is
the value assigned to them in the operator view policy.
<table>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0" method="post"
action="/opview/displays/NCICLUSTER-MY_POLICY_01.html">
<input type="hidden" name="last" value="Johnson">
<input type="hidden" name="location" value="Chicago">
<input type="hidden" name="first" value="Sanjay">
</form>

First View

</td></tr>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0" method="post"
action="/opview/displays/NCICLUSTER-MY_POLICY_02.html">
<input type="hidden" name="phone" value="555-5555">
<input type="hidden" name="email" value="sjohnson@example.com">
<input type="hidden" name="last" value="Johnson">
<input type="hidden" name="location" value="Chicago">
<input type="hidden" name="first" value="Sanjay">
</form>

106 Netcool/Impact: Operator View Guide

Second View

</td></tr>
</table>

policy attribute
This attribute specifies the name of another operator view. The specified operator
view must reside on the same server cluster as the first operator view.

If the value of the format attribute in the tag is action, the current operator view
opens this second view specified with this attribute when you click the link (one of
the links, in case of the list tag) that contains the tag value (list of values, in case of
the list tag).

Note: In case of the list tag, the list items are returned in table format, where each
item in the list is a cell in the table and each item is a link or button. You can only
use this attribute to specify the same operator view for every item in the list. If
you want to specify or override different target windows for each item, you must
use the policy_index attribute as described below.

The value of this attribute must be the name of the policy associated with the
operator view, without the Opview_ prefix. For example, if the name of the operator
view policy is Opview_MY_POLICY_01, you must assign the value MY_POLICY_01 to
the attribute.

You can specify runtime parameters for the policy using the params attribute. For
more information about the params attribute, see “params attribute” on page 103.

This attribute is only recognized if the value of the format attribute in the tag is
action.

Table 50 shows the properties of the policy attribute.

Table 50. policy attribute properties

Property Description

Type String

Applies To Scalar tag, list tag

Required Required if the value of the format attribute in the smart tag is action.
Otherwise, this is not recognized.

Default None

Overridable Yes

Indexable Yes, in case of the list tag

Index type Default replacement

Example of using policy attribute in scalar tag

The following example shows how to specify the operator view that is run when
you click a scalar value that is formatted as an action.
<!--showdata:

var="MyString"
type="scalar"
format="action"
policy="MY_POLICY_01"

-->

Chapter 5. Working with advanced smart tags 107

When this tag is parsed, HTML output similar to the one below is returned to the
Web browser, where the value of the MyString variable is Click to launch view.

<form id="MyString_form_0_0" name="MyString_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_01.html">
</form>

Click to launch view

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using policy attribute in list tag

The following example shows how to specify the operator view that is run when
you click a list value that is formatted as an action.
<!--showdata:

var="MyList"
type="scalar"
format="action"
policy="MY_POLICY_01"

-->

When this tag is parsed, HTML output similar to the one below is returned to the
Web browser, where the value of the MyList variable is Click to launch
view,Click to launch view.
<table>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_01.html"></form>

Click to launch view

</td></tr>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_01.html"></form>

Click to launch view

</td></tr>
</table>

Indexed policy attribute
The policy attribute postfixed with an index can be used in a list tag.

It allows you to specify a different operator view to open for each item in the list.
Any value that you specify using this attribute overrides the policy attribute as it
applies to the item.

The syntax of this attribute is as follows:
policy_index=opview

Where index is an integer that identifies the item in the list and opview is the name
of the operator view. Index values for this attribute are zero-based.

This attribute is only recognized if the value of the format attribute is action.

108 Netcool/Impact: Operator View Guide

Example of using indexed policy attribute

The following example shows how to specify the operator views that is run when
you click a list value that is formatted as an action.
<!--showdata:

var="MyList"
type="scalar"
format="action"
policy_0="MY_POLICY_01"
policy_1="MY_POLICY_02"

-->

When this tag is parsed, HTML output similar to the one below is returned to the
Web browser, where the value of the MyList variable is First View, Second View.
<table>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_01.html"></form>
First View
</td></tr>
<tr><td>
<form id="MyList_form_0_0" name="MyList_form_0_0"
method="post" action="/opview/displays/NCICLUSTER-MY_POLICY_02.html">
</form>

Second View

</td></tr>
</table>

reversepair attribute
For tables of format peritem, this attribute specifies the order of the th and td
elements in the HTML table that contain the name and value for each field in the
data item.

By default, th elements come before the td elements in the table. If you set this
attribute to true, the th elements are displayed after the td elements.

Table 51 shows the properties of the reversepair attribute.

Table 51. reversepair attribute properties

Property Description

Type Boolean

Applies To Orgnodes tag

Required Optional

Default false

Overridable Yes

Indexable No

The following example shows how to set the reversepair attribute in the HTML
table element that contains the data items.

Chapter 5. Working with advanced smart tags 109

<!--showdata:
var="MyContacts"
type="orgnodes"
format="peritem"
reversepair="true"

-->

rowcellclass attribute
This attribute performs the same function as the cellclass attribute described in
the cellclass attribute, except that it allows you to specify or override the class
attribute for a specific td element in the table by a combination of row and field
name.

The syntax of this attribute is as follows:
rowcellclass_row_field=class

Where row is an integer that identifies the row that contains the td elements, field
is the name of the data type field, and class is the name of the DOM class. Index
values for this attribute are zero-based.

Table 52 shows the properties of the rowcellclass_row_field attribute.

Table 52. rowcellclass_row_field attribute properties

Property Description

Type String

Applies To OrgNodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

Indexing type Index field replacement

Example of using rowcellclass attribute

The following example shows how to set the class attribute by row and field
name for the HTML td elements in the table that contain the data item fields.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
rowcellclass_0_First="first"
rowcellclass_0_Second="second"
rowcellclass_0_Third="third"
rowcellclass_0_Fourth="fourth"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>

110 Netcool/Impact: Operator View Guide

</tr>
<tr>
<td class="first">Peter</td>
<td class="second">Abduallah</td>
<td class="third">pabduallah@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

rowcellstyle attribute
This attribute performs the same function as the cellclass attribute described in
the cellstyle attribute used in orgnodes tag, except that it allows you to specify or
override the style attribute for a specific td element in the table by a combination
of row and field name.

The syntax of this attribute is as follows:
rowcellstyle_row_field=style

Where row is an integer that identifies the row that contains the td elements, field
is the name of the data type field, and style is a valid CSS style statement. Index
values for this attribute are zero-based.

Table 53 shows the properties of the rowcellstyle_row_field attribute.

Table 53. rowcellstyle_row_field attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

Indexing type Index field replacement

The following example shows how to set the style attribute by row and field
name for the HTML td elements in the table that contain the data item fields.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
rowcellstyle_0_First="color: red"

Chapter 5. Working with advanced smart tags 111

rowcellstyle_0_Second="color: blue"
rowcellstyle_0_Third="color: green"
rowcellstyle_0_Fourth="color: black"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td class="first">Peter</td>
<td class="second">Abduallah</td>
<td class="third">pabduallah@example.com</td>
<td class="fourth">123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

rowcelltext attribute
This attribute allows you to specify or override the text value that appears in a td
element in the table.

The syntax of this attribute is as follows:
rowcelltext_row_field=text

Where row is an integer that identifies the row that contains the td elements, field
is the name of the data type field, and text is any text string. Index values for this
attribute are zero-based.

Table 54 shows the properties of the rowcelltext_row_field attribute.

Table 54. rowcelltext_row_field attribute properties

Property Description

Type String

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

112 Netcool/Impact: Operator View Guide

Table 54. rowcelltext_row_field attribute properties (continued)

Property Description

Indexable Yes

Indexing type Index field replacement

The following example shows how to set text value by row and field name for
HTML td elements in the table.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
rowcelltext_0_First="Anne"
rowcelltext_0_Second="Rodriguez"
rowcelltext_0_Third="arodriguez@example.com"
rowcelltext_0_Fourth="567-123"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Ann</td>
<td>Rodriguez</td>
<td>arodriguez@example.com</td>
<td>567-123</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

rowclass attribute
This attribute specifies the value of the class attribute in the HTML tr elements
that contain the data items in the table.

This excludes any tr elements that contain the table header cells or actions. The
class attribute identifies the tr as one of a class of elements in the HTML DOM.
You can use this attribute to format the tr with CSS or to manipulate it with
DHTML and JavaScript code.

Chapter 5. Working with advanced smart tags 113

The syntax of this attribute is as follows:
rowclass=classname
rowclass=classname0,classname1,classname2 ...

Where classname is the name of a DOM class.

The first supported syntax allows you to specify a single class for every tr element
in the table. The second syntax allows you to specify a list of classes, where each
item in the list is associated with an individual tr element in the order it appears.
If the number of tr elements in the table exceeds the number of specified classes,
the list wraps back to the beginning.

Table 55 shows the properties of the rowclass attribute.

Table 55. rowclass attribute properties

Property Description

Type String or list

Applies To Orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable Yes

Indexing Type Index replacement

The following example shows how to set the same class attribute for all the
HTML tr elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
rowclass="row-class"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr class="row-class">
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr class="row-class">
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>

114 Netcool/Impact: Operator View Guide

<tr class="row-class">
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Here, the id and name attributes in the table element contain the name of the var
attribute in the smart tag as a default.

The following example shows how to set different class attributes for all the
HTML tr elements in the table that contain the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
rowclass="row-a,row-b,row-c"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr class="row-a">
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr class="row-b">
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr class="row-c">
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Indexed rowclass attribute
The rowclass attribute postfixed with an index allows you to specify or override
the class attribute for tr elements in the table by row.

The syntax of this attribute is as follows:
rowclass_row=class

Chapter 5. Working with advanced smart tags 115

Where row is an integer that identifies the row that contains the th elements and
class is the name of the DOM class. Index values for this attribute are zero-based.

Example of overriding the class attribute by row

The following example shows how to set the class attribute by row for the HTML
tr elements in the table that contain the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
rowclass_0="row-a"
rowclass_1="row-b"
rowclass_2="row-c"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table>
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr class="row-a">
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr class="row-b">
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr class="row-c">
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

rowstyle attribute
This attribute specifies the value of the style attribute in the HTML tr elements
that contain the data items in the table.

This excludes any tr elements that contain the table header cells or actions. The
style attribute contains CSS information that applies to the tr. You can use this
attribute to format the tr with CSS.

The syntax of this attribute is as follows:
rowstyle=style
rowstyle=style0,style1,style2 ...

116 Netcool/Impact: Operator View Guide

Where style is a valid CSS style statement.

The first supported syntax allows you to specify a single style for every tr element
in the table. The second syntax allows you to specify a list of styles, where each
item in the list is associated with an individual tr element in the order it appears.
If the number of tr elements in the table exceeds the number of specified styles,
the list wraps back to the beginning.

Table 56 shows the properties of the rowstyle attribute.

Table 56. rowstyle attribute properties

Property Description

Type String or list.

Applies To OrgNodes tag.

Required Optional.

Default None.

Overridable Yes.

Indexable Yes.

Indexing Type Index replacement.

The following example shows how to set the same style attribute for all the
HTML tr elements in the table that contain the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
rowstyle="font-family: Verdana; font-weight: bold"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr style="font-family: Verdana; font-weight: bold">
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr style="font-family: Verdana; font-weight: bold">
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr style="font-family: Verdana; font-weight: bold">
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>

Chapter 5. Working with advanced smart tags 117

<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Here, the id and name attributes in the table element contain the name of the var
attribute in the smart tag as a default.

The following example shows how to set different style attributes for the HTML
tr elements in the table that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
rowstyle="color: red,color: green,color: blue,color: black"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr style="color: red">
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr style="color: blue">
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr style="color: green">
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

showheader attribute
This attribute specifies whether to display the header row in the HTML table
element that contains the data items.

Possible values are true and false.

Table 57 shows the properties of the showheader attribute.

Table 57. showheader attribute properties

Property Description

Type Boolean

118 Netcool/Impact: Operator View Guide

Table 57. showheader attribute properties (continued)

Property Description

Applies To Orgnodes tag

Required Optional

Default The default is true.

Overridable Yes

Indexable No

The following example shows how to hide the header row in the table that
contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
showheader="false"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyContacts variable is an array of three data items and each
data item contains fields named First, Last, Email and Phone. The names of the
data item fields are not displayed in a header row in the table.
<table>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

spaceheight attribute
This attribute specifies the amount of space (for example, pixels or points) between
name/value pairs in a group where the table format is peritem, the orientation is
vert, and the number of groups is greater than one.

The amount of space is specified in CSS-supported units (for example, pixels or
points).

Table 58 on page 120 shows the properties of the spaceheight attribute.

Chapter 5. Working with advanced smart tags 119

Table 58. spaceheight attribute properties

Property Description

Type Integer

Applies To Orgnodes tag

Required Optional

Default 10px

Overridable Yes

Indexable No

The following example shows how to set the spaceheight attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="peritem"
orientation="vert"
grouping="2"
spaceheight="92px"

-->

spacewidth attribute
This attribute specifies the amount of space in CSS-supported units between
name/value pairs in a group where the table format is peritem, the orientation is
horiz, and the number of groups is greater than one.

The amount of space if specified in CSS-supported units (for example, pixels or
points)

Table 59 shows the properties of the spacewidth attribute.

Table 59. spacewidth attribute properties

Property Description

Type Integer

Applies To Orgnodes tag

Required Optional

Default 10px

Overridable Yes

Indexable No

The following example shows how to set the spacewidth attribute in the HTML
table element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="peritem"
grouping="2"
spacewidth="92px"

-->

120 Netcool/Impact: Operator View Guide

style attribute
This attribute specifies the value of the style attribute in the HTML table element
(span element, in case of the scalar tag and list tag) that contains the data items.

The style attribute contains CSS information that applies to the table (span, in
case of the scalar tag and list tag). You can use this attribute to format the span
with CSS.

Note: In case of the scalar tag, this attribute is only recognized if the value of the
format attribute is string, url or action. In case of the list tag, this attribute is
recognized for all display formats.

To specify the style value for individual cells in the table, see “cellstyle attribute
used in list tag” on page 75.

Table 60 shows the properties of the style attribute.

Table 60. style attribute properties

Property Description

Type String

Applies To Scalar tag, list tag, orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable No

Example of using style attribute in scalar tag

The following example shows how to set the style attribute in the HTML span
element that contains the scalar value.
<!--showdata:

var="MyString"
type="scalar"
format="string"
style="font: Verdana; size: 48pt; color: #7f7f7f"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyString variable is Testing.
<span id="MyString" name="MyString" style="font: Verdana;
size: 48pt; color: #7f7f7f">Testing

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using style attribute in list tag

The following example shows how to set the class attribute in the HTML table
element that contains the list of values.

Chapter 5. Working with advanced smart tags 121

<!--showdata:
var="MyList"
type="list"
format="string"
style="font-family: Verdana; font-size 12pt; color: red"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is one,two,three,four.
<table style="font-family: Verdana; font-size 12pt; color: red">
<tr><td>one</td><tr>
<tr><td>two</td></tr>
<tr><td>three</td></tr>
<tr><td>four</td></tr>
</table>

Example of using style attribute in orgnodes tag

The following example shows how to set the style attribute in the HTML table
element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
style="background-color: gray; border: 2px solid black"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element"
style="background-color: gray; border: 2px solid black">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

122 Netcool/Impact: Operator View Guide

target attribute
This attribute specifies a target browser window.

If the value of the format attribute in the tag is url, the scalar value (value in the
list, in case of the list tag) is formatted as a link using the HTML a tag. The value
of the target attribute in the tag is the specified target window. Possible values
include _self, _top, _parent, _new or any other valid name for a target window.

Note: In case of the list tag, you can only use this attribute to specify the same
target window for every item in the list. If you want to specify or override
different target windows for each item, you must use the target_index attribute as
described below.

This attribute is only recognized if the value of the format attribute is action or
url.

Table 61 shows the properties of the target attribute.

Table 61. target attribute properties

Property Description

Type String

Applies To Scalar tag, list tag

Required Required if the value of the format attribute in the smart tag is action
or url. Otherwise, this is not recognized.

Default None

Overridable Yes

Indexable Yes, in case of the list tag

Index type Default replacement

Example of using target attribute in scalar tag

The following example shows how to specify a target browser window for a scalar
value that is formatted as a link.
<!--showdata:

var="MyString"
type="scalar"
format="url"
url="http://www.example.com"
target="_new"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyString variable is Example.

Example

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Chapter 5. Working with advanced smart tags 123

Example of using target attribute in list tag

The following example shows how to specify a target browser window for a list of
values that are formatted as links.
<!--showdata:

var="MyList"
type="list"
format="url"
url="http://www.example.com"
target="_new"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is Example 1,Example 2.
<table>
<tr><td>
Example 1
</td><tr>
<tr><td>
Example 2
</td><tr>
</table>

Indexed target attribute
The target attribute with an index can be used in the list tag.

It allows you to specify or override a different target window for each item in the
list. Any value that you specify using this attribute overrides the target attribute
as it applies to the item.

The syntax of this attribute is as follows:
target_index=window

Where index is an integer that identifies the item in the list and window is the name
of the target window. Index values for this attribute are zero-based.

This attribute is only recognized if the value of the format attribute is action or
url.

The following example shows how to specify a target browser window for a list of
values that are formatted as links.
<!--showdata:

var="MyList"
type="list"
format="url"
url_0="http://www.example.com"
url_1="http://www.ibm.com"
target_0="example"
target_1="ibm"

-->

When this tag is parsed, it returns the following HTML output to the Web browser,
where the value of the MyList variable is Example,IBM.
<table>
<tr><td>
Example
</td><tr>

124 Netcool/Impact: Operator View Guide

<tr><td>
IBM
</td><tr>
</table>

title attribute
This attribute specifies the value of the title attribute in the HTML span element
(table element, in case of the list tag and orgnodes tag).

The Web browser displays the contents of this attribute when a user moves the
mouse over the span element (table element, in case of the list tag and orgnodes
tag). You can use this attribute to provide hover help (ToolTip) for the operator
view.

Note: In case of the scalar tag, this attribute is only recognized if the value of the
format attribute is string, url or action. In case of the list tag and orgnodes tag,
this attribute is recognized for all display formats.

Table 62 shows the properties of the title attribute.

Table 62. title attribute properties

Property Description

Type String

Applies To Scalar tag, list tag, orgnodes tag

Required Optional

Default None

Overridable Yes

Indexable No

Example of using title attribute in scalar tag

The following example shows how to set the title attribute in the HTML span
element that contains the scalar value.
<!--showdata:

var="MyString"
type="scalar"
format="string"
title="Some tooltip help here"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyString variable is Testing.
<span id="MyString" name="MyString"
title="Some tooltip help here">Testing

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using title attribute in list tag

The following example shows how to set the title attribute in the HTML table
element that contains the list of values.

Chapter 5. Working with advanced smart tags 125

<!--showdata:
var="MyList"
type="list"
format="string"
title="Some tooltip help"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is one,two,three,four.
<table>
<tr><td>one</td><tr>
<tr><td>two</td></tr>
<tr><td>three</td></tr>
<tr><td>four</td></tr>
</table>

Example of using title attribute in orgnodes tag

The following example shows how to set the title attribute in the HTML table
element that contains the data items.
<!--showdata:

var="MyContacts"
type="orgnodes"
format="customtable"
title="Some tooltip help here"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyContacts variable is an array of three data items
and each data item contains fields named First, Last, Email and Phone.
<table id="table-element" name="table-element">
<tr>
<th>First</th>
<th>Last</th>
<th>Email</th>
<th>Phone</th>
</tr>
<tr>
<td>Peter</td>
<td>Abduallah</td>
<td>pabduallah@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>Mary</td>
<td>Du</td>
<td>mdu@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
<tr>
<td>John</td>
<td>Oalaleye</td>
<td>joalaleye@example.com</td>
<td>123-456</td>
<!-- RIGHT ACTIONS for this row --><td><table><tr></tr></table></td>
</tr>
</table>

Here, the id and name attributes contain the name of the var attribute in the smart
tag as a default.

126 Netcool/Impact: Operator View Guide

url attribute
This attribute specifies a target URL.

If the value of the format attribute in the tag is url, the scalar value is formatted as
a link using the HTML a tag (in case of a list tag, the values in the list are
formatted as links). The value of the href attribute in the tag is the corresponding
specified target URL.

Note: In case of a list tag, you can only use this attribute to specify the same target
URL for every item in the list. If you want to specify or override different target
URLs for each item, you must use the url_index attribute as described below.

This attribute is only recognized if the value of the format attribute is url (scalar
tag and list tag) or action (list tag).

Table 63 shows the properties of the url attribute.

Table 63. url attribute properties

Property Description

Type String

Applies To Scalar tag, list tag

Required Required if the value of the format attribute in the smart tag is url.
Otherwise, this is not recognized.

Default None

Overridable Yes

Indexable Yes, in case of the list tag

Index type Default replacement

Example of using url attribute in scalar tag

The following example shows how to specify a URL target for a scalar value that is
formatted as a link.
<!--showdata:

var="MyString"
type="scalar"
format="url"
url="http://www.example.com"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyString variable is Example.

Example

The id and name attributes contain the name of the var attribute in the smart tag as
a default.

Example of using url attribute in list tag

The following example shows how to specify a URL target for values in a list that
are formatted as links.

Chapter 5. Working with advanced smart tags 127

<!--showdata:
var="MyList"
type="list"
format="url"
url="http://www.example.com"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyList variable is Example 1,Example 2.
<table>
<tr><td>
Example 1
</td><tr>
<tr><td>
Example 2
</td><tr>
</table>

Indexed url attribute
The url attribute postfixed with an index can be used in a list tag. It allows you to
specify or override a different target URL for each item in the list.

Any value that you specify using this attribute overrides the url attribute as it
applies to the item.

The syntax of this attribute is as follows:
url_index=targeturl

Where index is an integer that identifies the item in the list and targeturl is the
URL. Index values for this attribute are zero-based.

This attribute is only recognized if the value of the format attribute is url.

Example of using indexed url attribute

The following example shows how to specify individual URL targets for list values
that are formatted as a link.
<!--showdata:

var="MyList"
type="list"
format="url"
url_0="http://www.example.com"
url_1="http://www.ibm.com"

-->

When this tag is parsed, the following HTML output is returned to the Web
browser, where the value of the MyString variable is Example,IBM.
<table>
<tr><td>
Example
</td><tr>
<tr><td>
IBM
</td><tr>
</table>

update_delay attribute
This attribute is used to specify delays in HTTP calls by the operator view.

128 Netcool/Impact: Operator View Guide

A Web page cannot make more than two simultaneous HTTP calls. This can create
a problem if you have more than two smart tags that are set to refresh at the same
update interval. You can use the update_delay to specify update delays for smart
tags so that simultaneous HTTP calls are not made.

The following table shows the properties of the update_delay attribute.

Table 64. update_delay attribute properties

Property Description

Value Type Integer

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default 0

Overridable Yes, but only on initial display page load

Indexable No

The following example shows how to use the update_delay attribute to stagger
HTTP calls:
<!--showdata:

var="time"
type="scalar"
format="string"
update_interval="10"
update_delay="0"

-->

<!--showdata:
var="cost"
type="scalar"
format="string"
update_interval="10"
update_delay="3"

-->

<!--showdata:
var="quality"
type="scalar"
format="string"
update_interval="10"
update_delay="6"

-->

When these tags are parsed, each one is updated at different intervals. The time
tag updates at 0, 10, 20, 30 seconds, and so on. The cost tag updates at 3, 13, 23, 33
seconds, and so on. The quality tag updates at 6, 16, 26, 36, seconds, and so on.

This example also works for a list tag and orgnodes tag, except that the type
element is of type="list" value for a list tag and type="orgnodes" for an orgnodes
tag.

update_effect attribute
This attribute is used to apply a preset effect from the JavaScript library on
updated content.

The following table shows the properties of the update_effect attribute:

Chapter 5. Working with advanced smart tags 129

Table 65. update_effect attributes properties

Property Description

Value Type String. This refers to one of the available effect types listed below.

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default None

Overridable Yes, but only on initial display page load

Indexable No

The following values are valid for the update_effect attribute:

pulse
Quickly fades the content in and out one time.

pulse2
Quickly fades the content in and out two times.

pulse3
Quickly fades the content in and out three times.

shake
Causes the content to shake horizontally.

highlight
Turns the content white and then fades it back to normal.

highlight-black
Turns the content black and then fades it back to normal.

highlight-red
Turns the content red and then fades it back to normal.

highlight-blue
Turns the content blue and then fades it back to normal.

highlight-dark blue
Turns the content dark blue and then fades it back to normal.

highlight-light blue
Turns the content light blue and then fades it back to normal.

highlight-green
Turns the content green and then fades it back to normal.

highlight-yellow
Turns the content yellow and then fades it back to normal.

highlight-orange
Turns the content orange and then fades it back to normal.

highlight-purple
Turns the content purple and then fades it back to normal.

Example of using update_effect attribute

The following example shows how to use the update_effect to have the updated
content pulse two times after an update:

130 Netcool/Impact: Operator View Guide

<!--showdata:
var="time"
type="scalar"
format="string"
update_interval="30"
update_effect="pulse2"
-->

This example also works for a list tag and orgnodes tag, except that the type
element is of type="list" value for a list tag and type="orgnodes" for an orgnodes
tag.

update_interval attribute
This attribute specifies how frequently, in seconds, to automatically refresh your
operator view page.

The following table shows the properties of the update_interval attribute.

Table 66. update_interval attribute properties

Property Description

Value Type Integer

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default -1. This option signals that there is no interval refresh.

Overridable Yes, but only on initial display page load

Indexable No

Example of using update_interval attribute

The following example shows how to automatically refresh your operator view
every 30 seconds:
<!--showdata:

var="time"
type="scalar"
format="string"
update_interval="30"

-->

This tag gets refreshed every 30 seconds when it is parsed. This example is almost
identical for a list tag and orgnodes tag, except that the type element is of
type="list" value for a list tag and type="orgnodes" for an orgnodes tag.

update_label attribute
This attribute is used to change the text that is displayed in the refresh link or
button in the operator view.

The following table shows the properties of the update_label attribute.

Table 67. update_label attribute properties

Property Description

Value Type String

Chapter 5. Working with advanced smart tags 131

Table 67. update_label attribute properties (continued)

Property Description

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default Refresh

Overridable Yes, but only on initial display page load

Indexable No

Example of using update_label attribute

The following example shows how to use the update_label attribute to change the
refresh button text in the operator view:
<!--showdata:

var="time"
type="scalar"
format="string"
update_option="button"
update_label="Get Current Time"
-->

When these tags are parsed, a Get Current Time button is displayed in the
operator view.

This example also works for a list tag and orgnodes tag, except that the type
element is of type="list" value for a list tag and type="orgnodes" for an orgnodes
tag.

update_option attribute
This attribute creates either a refresh link or button in the operator view.

Note: The tag and other smart tags that are listed in the update_tags attribute are
refreshed. For more information about the update_tags attribute, see “update_tags
and *_override_tags attribute” on page 136.

The following table shows the properties of the update_option attribute:

Table 68. update_option attribute properties

Property Description

Value Type String (either "link," "button," or "none")

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default "None"

Overridable Yes, but only on initial display page load

Indexable No

Example of using update_option attribute

The following example shows how to insert a refresh link into the operator view:

132 Netcool/Impact: Operator View Guide

<!--showdata:
var="time"
type="scalar"
format="string"
update_option="link"

-->

The following example shows how to insert a refresh button into the operator
view:
<!--showdata:

var="time"
type="scalar"
format="string"
update_option="button"

-->

When this tag is parsed, a refresh button is displayed in the operator view.

These examples also work for a list tag and orgnodes tag, except that the type
element is of type="list" value for a list tag and type="orgnodes" for an orgnodes
tag.

update_params attribute
This attribute provides a way for you to send dynamic data with each AJAX call. It
references a list of strings that specify IDs on a Web page with contents that you
want to send through EventContainer accessible parameters.

The policy can use this during an AJAX update. The elements on the Web page
that the IDs reference in the update_params attribute are not necessarily
AJAX-updated sections. They can be static <div> or elements.

The following table shows the properties of the update_params attribute.

Table 69. update_params attribute properties

Property Description

Value Type Comma delimited list of Strings that refer to Web page element IDs

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default None

Overridable Yes, but only on initial display page load

Indexable No

Example of using update_params attribute

In the following example, there are three smart tags that are used for the display
page. The lat, long, and station_address tags all have a refresh interval of 20
seconds. However, the station_address tag makes a Web service call to a gas
station provider and uses the update_params attribute to update the latitude and
longitude coordinates.
<!--showdata:

var="lat"
type="scalar"
format="string"
update_interval="20"

Chapter 5. Working with advanced smart tags 133

update_tags="lat,long"
-->

<!--showdata:
var="long"
type="scalar"
format="string"

-->

<!--showdata:
var="station_address"
type="scalar"
format="string"
update_interval="20"
update_delay="15"
update_policy="WS_GasStation"
update_params="lat,long"

-->

<!--showdata:
var="temp"
type="scalar"
format="string"

-->

The update_params attribute accepts a comma delimited list of ID referenced
elements for a page. When these tags are parsed, the latitude and longitude
coordinates are updated.

This example also works for a list tag and orgnodes tag, except that the type
element is of type="list" value for a list tag and type="orgnodes" for an orgnodes
tag.

update_policy attribute
This attribute is used to call a different policy than the one that is associated with
the current display page.

The following table shows the properties of the update_policy attribute.

Table 70. update_policy attribute properties

Property Description

Value Type String

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default The policy that is associated with the current display page.

Overridable Yes, but only on initial display page load.

Indexable No

Example of using update_policy attribute

In the following example, the smart tag was originally coded to call the GlobalTime
policy for successive time updates. However, this example shows how to use the
update_policy to use a different policy for updates:
<!--showdata:

var="time"
type="scalar"

134 Netcool/Impact: Operator View Guide

format="string"
update_option="button"
update_label="Get Local Time"
update_policy="LocalTime"
-->

When these tags are parsed, the LocalTime policy is used for every successive time
update.

This example also works for a list tag and orgnodes tag, except that the type
element is of type="list" value for a list tag and type="orgnodes" for an orgnodes
tag.

update_precall and update_postcall attributes
Before and after any AJAX call is made, you have the option of executing your
own JavaScript code. You can use this to change any parameter data that the AJAX
call needs to pull, or to determine a new set of tags to update using the
override_tags option.

You can also use JavaScript code to add your own graphical effects. All operator
view pages include the JavaScript library by default.

The following table shows the properties of the update_precall and
update_postcall attributes:

Table 71. update_precall and update_postcall attributes properties

Property Description

Value Type String. This is the name of an available JavaScript function.

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default None

Overridable Yes, but only on initial display page load

Indexable No

Example of using update_precall and update_postcall attributes

The following example shows how to create your own JavaScript functions and
then pass the function name into the update_precall and update_postcall
attributes:
<script language="javascript">
function fadeOut() {

Effect.Fade($("time"));
}
function fadeIn() {

Effect.Appear($("time"));
}
</script>

<!--showdata:
var="time"
type="scalar"
format="string"

Chapter 5. Working with advanced smart tags 135

update_interval="30"
update_precall="fadeOut"
update_postcall="fadeIn"
-->

This example also works for a list tag and orgnodes tag, except that the type
element is of type="list" value for a list tag and type="orgnodes" for an orgnodes
tag.

update_tags and *_override_tags attribute
This attribute is used to simultaneously update a number of smart tags on the
current display page.

The following table shows the properties of the update_tags attribute.

Table 72. update_tags attribute properties

Property Description

Value Type Comma delimited list of strings that refer to Web page element IDs to
update through AJAX calls.

Applies To Scalar tag (This excludes format="plain" scalar tags), list tag, orgnodes
tag

Required Optional

Default None

Overridable Yes. You can override the tag using either of the following options:

v At the initial page load by the standard policy variable override.
This type of override can be done only at the initial display page
load.

v Using the *_override_tags property. This method of overriding can
be used at any time after the initial load. The *_override_tags
property is specified within the HTML file as an attribute inside of a
<div> tag that specifies a specific ID. The following example shows
how to do this for the "location" smart tag:

<div id="location_override_tags" style="visibility:hidden">
location,temperature</div>

Indexable No

Example of using update_tags attribute

In the following example, the smart tag was originally coded to call the GlobalTime
policy for successive time updates. However, this example shows how to use the
update_policy to use a different policy for updates:
<!--showdata:

var="location"
type="scalar"
format="string"
update_interval="60"
update_tags="location,wind,sky,temp,pressure,humidity"
-->

<!--showdata:
var="wind"
type="scalar"
format="string"

136 Netcool/Impact: Operator View Guide

-->

<!--showdata:
var="sky"
type="scalar"
format="string"

-->

<!--showdata:
var="temp"
type="scalar"
format="string"

__>

<!--showdata:
var="pressure"
type="scalar"
format="string"
-->

<!--showdata:
var="humidity"
type="scalar"
format="string"
-->

When these tags are parsed, new content is displayed for the location, wind, sky,
temp, pressure, and humidity tags.

This example also works for a list tag and orgnodes tag, except that the type
element is of type="list" value for a list tag and type="orgnodes" for an orgnodes
tag.

var, type, and format attributes
The var, type and format attributes are common attributes that are shared by all
the advanced smart tags.

These attributes are always required. For information about var, type and format
attributes, see “Common attributes” on page 29.

Note: For the OrgNodes tag, the value of the format attribute can be customtable,
which displays the data items as rows in a table, or peritem, which displays each
data item as a separate table.

Chapter 5. Working with advanced smart tags 137

138 Netcool/Impact: Operator View Guide

Appendix A. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features you can use with Netcool/Impact when accessing it on
the IBM Personal Communications terminal emulator:
v You can operate all features using the keyboard instead of the mouse.
v You can read text through interaction with assistive technology.
v You can use system settings for font, size, and color for all user interface

controls.
v You can magnify what is displayed on your screen.

For more information about viewing PDFs from Adobe, go to the following web
site: http://www.adobe.com/enterprise/accessibility/main.html

© Copyright IBM Corp. 2006, 2014 139

140 Netcool/Impact: Operator View Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2014 141

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

142 Netcool/Impact: Operator View Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Appendix B. Notices 143

144 Netcool/Impact: Operator View Guide

Glossary

This glossary includes terms and definitions for Netcool/Impact.

The following cross-references are used in this glossary:
v See refers you from a term to a preferred synonym, or from an acronym or

abbreviation to the defined full form.
v See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/
globalization/terminology (opens in new window).

A
assignment operator

An operator that sets or resets a value to a variable. See also operator.

B
Boolean operator

A built-in function that specifies a logical operation of AND, OR or NOT
when sets of operations are evaluated. The Boolean operators are &&, ||
and !. See also operator.

C
command execution manager

The service that manages remote command execution through a function in
the policies.

command line manager
The service that manages the command-line interface.

Common Object Request Broker Architecture (CORBA)
An architecture and a specification for distributed object-oriented
computing that separates client and server programs with a formal
interface definition.

comparison operator
A built-in function that is used to compare two values. The comparison
operators are ==, !=, <, >, <= and >=. See also operator.

control structure
A statement block in the policy that is executed when the terms of the
control condition are satisfied.

CORBA
See Common Object Request Broker Architecture.

D
database (DB)

A collection of interrelated or independent data items that are stored
together to serve one or more applications. See also database server.

© Copyright IBM Corporation 2005, 2011 © IBM 2006, 2014 145

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

database event listener
A service that listens for incoming messages from an SQL database data
source and then triggers policies based on the incoming message data.

database event reader
An event reader that monitors an SQL database event source for new and
modified events and triggers policies based on the event information. See
also event reader.

database server
A software program that uses a database manager to provide database
services to other software programs or computers. See also database.

data item
A unit of information to be processed.

data model
An abstract representation of the business data and metadata used in an
installation. A data model contains data sources, data types, links, and
event sources.

data source
A repository of data to which a federated server can connect and then
retrieve data by using wrappers. A data source can contain relational
databases, XML files, Excel spreadsheets, table-structured files, or other
objects. In a federated system, data sources seem to be a single collective
database.

data source adapter (DSA)
A component that allows the application to access data stored in an
external source.

data type
An element of a data model that represents a set of data stored in a data
source, for example, a table or view in a relational database.

DB See database.

DSA See data source adapter.

dynamic link
An element of a data model that represents a dynamic relationship
between data items in data types. See also link.

E
email reader

A service that polls a Post Office Protocol (POP) mail server at intervals for
incoming email and then triggers policies based on the incoming email
data.

email sender
A service that sends email through an Simple Mail Transfer Protocol
(SMTP) mail server.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event processor
The service responsible for managing events through event reader, event

146 Netcool/Impact: Operator View Guide

listener and email reader services. The event processor manages the
incoming event queue and is responsible for sending queued events to the
policy engine for processing.

event reader
A service that monitors an event source for new, updated, and deleted
events, and triggers policies based on the event data. See also database
event reader, standard event reader.

event source
A data source that stores and manages events.

exception
A condition or event that cannot be handled by a normal process.

F
field A set of one or more adjacent characters comprising a unit of data in an

event or data item.

filter A device or program that separates data, signals, or material in accordance
with specified criteria. See also LDAP filter, SQL filter.

function
Any instruction or set of related instructions that performs a specific
operation. See also user-defined function.

G
generic event listener

A service that listens to an external data source for incoming events and
triggers policies based on the event data.

graphical user interface (GUI)
A computer interface that presents a visual metaphor of a real-world scene,
often of a desktop, by combining high-resolution graphics, pointing
devices, menu bars and other menus, overlapping windows, icons and the
object-action relationship. See also graphical user interface server.

graphical user interface server (GUI server)
A component that serves the web-based graphical user interface to web
browsers through HTTP. See also graphical user interface.

GUI See graphical user interface.

GUI server
See graphical user interface server.

H
hibernating policy activator

A service that is responsible for waking hibernating policies.

I
instant messaging reader

A service that listens to external instant messaging servers for messages
and triggers policies based on the incoming message data.

Glossary 147

instant messaging service
A service that sends instant messages to instant messaging clients through
a Jabber server.

IPL See Netcool/Impact policy language.

J
Java Database Connectivity (JDBC)

An industry standard for database-independent connectivity between the
Java platform and a wide range of databases. The JDBC interface provides
a call level interface for SQL-based and XQuery-based database access.

Java Message Service (JMS)
An application programming interface that provides Java language
functions for handling messages.

JDBC See Java Database Connectivity.

JMS See Java Message Service.

JMS data source adapter (JMS DSA)
A data source adapter that sends and receives Java Message Service (JMS)
messages.

JMS DSA
See JMS data source adapter.

K
key expression

An expression that specifies the value that one or more key fields in a data
item must have in order to be retrieved in the IPL.

key field
A field that uniquely identifies a data item in a data type.

L
LDAP See Lightweight Directory Access Protocol.

LDAP data source adapter (LDAP DSA)
A data source adapter that reads directory data managed by an LDAP
server. See also Lightweight Directory Access Protocol.

LDAP DSA
See LDAP data source adapter.

LDAP filter
An expression that is used to select data elements located at a point in an
LDAP directory tree. See also filter.

Lightweight Directory Access Protocol (LDAP)
An open protocol that uses TCP/IP to provide access to directories that
support an X.500 model and that does not incur the resource requirements
of the more complex X.500 Directory Access Protocol (DAP). For example,
LDAP can be used to locate people, organizations, and other resources in
an Internet or intranet directory. See also LDAP data source adapter.

link An element of a data model that defines a relationship between data types
and data items. See also dynamic link, static link.

148 Netcool/Impact: Operator View Guide

M
mathematic operator

A built-in function that performs a mathematic operation on two values.
The mathematic operators are +, -, *, / and %. See also operator.

mediator DSA
A type of data source adaptor that allows data provided by third-party
systems, devices, and applications to be accessed.

N
Netcool/Impact policy language (IPL)

A programming language used to write policies.

O
operator

A built-in function that assigns a value to a variable, performs an operation
on a value, or specifies how two values are to be compared in a policy. See
also assignment operator, Boolean operator, comparison operator,
mathematic operator, string operator.

P
policy A set of rules and actions that are required to be performed when certain

events or status conditions occur in an environment.

policy activator
A service that runs a specified policy at intervals that the user defines.

policy engine
A feature that automates the tasks that the user specifies in the policy
scripting language.

policy logger
The service that writes messages to the policy log.

POP See Post Office Protocol.

Post Office Protocol (POP)
A protocol that is used for exchanging network mail and accessing
mailboxes.

precision event listener
A service that listens to the application for incoming messages and triggers
policies based on the message data.

S
security manager

A component that is responsible for authenticating user logins.

self-monitoring service
A service that monitors memory and other status conditions and reports
them as events.

server A component that is responsible for maintaining the data model, managing
services, and running policies.

Glossary 149

service
A runnable sub-component that the user controls from within the graphical
user interface (GUI).

Simple Mail Transfer Protocol (SMTP)
An Internet application protocol for transferring mail among users of the
Internet.

Simple Network Management Protocol (SNMP)
A set of protocols for monitoring systems and devices in complex
networks. Information about managed devices is defined and stored in a
Management Information Base (MIB). See also SNMP data source adapter.

SMTP See Simple Mail Transfer Protocol.

SNMP
See Simple Network Management Protocol.

SNMP data source adapter (SNMP DSA)
A data source adapter that allows management information stored by
SNMP agents to be set and retrieved. It also allows SNMP traps and
notifications to be sent to SNMP managers. See also Simple Network
Management Protocol.

SNMP DSA
See SNMP data source adapter.

socket DSA
A data source adaptor that allows information to be exchanged with
external applications using a socket server as the brokering agent.

SQL database DSA
A data source adaptor that retrieves information from relational databases
and other data sources that provide a public interface through Java
Database Connectivity (JDBC). SQL database DSAs also add, modify and
delete information stored in these data sources.

SQL filter
An expression that is used to select rows in a database table. The syntax
for the filter is similar to the contents of an SQL WHERE clause. See also
filter.

standard event reader
A service that monitors a database for new, updated, and deleted events
and triggers policies based on the event data. See also event reader.

static link
An element of a data model that defines a static relationship between data
items in internal data types. See also link.

string concatenation
In REXX, an operation that joins two characters or strings in the order
specified, forming one string whose length is equal to the sum of the
lengths of the two characters or strings.

string operator
A built-in function that performs an operation on two strings. See also
operator.

150 Netcool/Impact: Operator View Guide

U
user-defined function

A custom function that can be used to organize code in a policy. See also
function.

V
variable

A representation of a changeable value.

W
web services DSA

A data source adapter that exchanges information with external
applications that provide a web services application programming interface
(API).

X
XML data source adapter

A data source adapter that reads XML data from strings and files, and
reads XML data from web servers over HTTP.

Glossary 151

152 Netcool/Impact: Operator View Guide

Index

A
accessibility vi, 139
action panel

policies 10
tag 36

action_align attribute 48
action_class attribute 49
action_count attribute 51
action_disabled attribute 52
action_fieldparams attribute 53
action_hide attribute 55
action_hiderow attribute 55
action_isbutton attribute 56
action_label attribute 57
action_policy attribute 59
action_style attribute 60
action_target attribute 62
action_url attribute 62
action_varparams attribute 64
advanced display page 5

AJAX 7
creating 15

advanced operator policies
querying data sources 15

advanced operator view
identifying server cluster 16
l policy 15
overriding smart tag attributes 15
policy 14, 16
setting up 14
specifying data to display 16
specifying how to display data 17

advanced smart tags 30, 39
list tag 41
OrgNodes tag 44
scalar tag 39

AJAX
See advanced display page

aliases attribute 66
attributes

common 29
overriding 29

augmentation type 30
autourl attribute 67

B
basic display pages 4
basic operator view

action panel policies 10
creating 10
editing display page 12
editing policy 12
information groups 10
layout options 9
manually editing components 11
names 9

basic policies 2
basic smart tag 35

action panel tag 36

basic smart tag (continued)
event panel tag 36
information groups panel tag 37
property tag 35

books
see publications v, vi

C
cacheread attribute 69
cachewrite attribute 70
cellclass attribute 70

indexed 73, 74
cellstyle attribute 75, 77

indexed 77, 79
class attribute 81
common attributes 29
conventions

typeface x
creating a custom operator view

page 22
customer support viii

D
default attribute 83
default replacement type 31
delimiter attribute 84
directory names

notation x
disability 139
display page 4

creating manually 7
displays index page

.meta file parameters 19
customizing with .css stylesheet 18
customizing with .meta file 18
customizing with index URL 20
displaying a cluster with index

URL 20
passing an alternate stylesheet with

index URL 21

E
education

See Tivoli technical training
environment variables

notation x
escape characters 28
event panel tag 36
events

handling events in a policy 14
excludes attribute 85

F
field replacement type 33

fixes
obtaining vii

format attribute 137

G
glossary 145
grouping attribute 86

H
headerclass attribute 87, 89
headerstyle attribute 90, 92

I
id attribute 94
includes attribute 96
index field replacement type 33
index replacement type 32
indexed attribute 30, 31, 32, 33, 73, 74,

77, 89, 92, 98, 105, 108, 115, 124, 128
information groups panel tag 37
isbutton attribute 97, 98

L
label_align attribute 99
label_class attribute 100
label_show attribute 100
label_style attribute 101
label_text attribute 101
list tag 41, 73, 75, 77, 98, 105, 108, 124,

128

M
manuals

see publications v, vi

N
notation

environment variables x
path names x
typeface x

O
online publications

accessing vi
operator view 21, 22

advanced 2
advanced policies 3
basic 1
basic policies 2
components 2

© Copyright IBM Corp. 2006, 2014 153

operator view (continued)
creating a custom operator view

portlet 22
deleting 13
displays index page 17, 18, 19, 20, 21
managing 8
modifying 13
policy 2
process 8
selecting the operator view URL 21
setting up 8
types 1
viewing 13

operator views
introduction 1
overview 1

ordering publications vi
OrgNodes tag 44, 74, 77, 87, 89, 90, 92,

113, 115
orientation attribute

list tag 102
OrgNodes tag 103

P
params attribute 103

indexed attribute 105
path names

notation x
policy

advanced 3
creating 14
identifying 16
manipulating data 15

policy attribute 107
indexed attribute 108

problem determination and resolution ix
property tag 35
publications v

accessing online vi
ordering vi

R
reversepair attribute 109
rowcellclass_row_field attribute 110
rowcellstyle_row_field attribute 111
rowcelltext_row_field attribute 112
rowclass attribute 113

indexed attribute 115
rowstyle attribute 116

S
scalar tag 39
server cluster

identifying 16
setting up

basic operator view 9
showheader attribute 118
smart tags 27

syntax 27
Software Support

contacting viii
overview vii
receiving weekly updates vii

spaceheight attribute 119
spacewidth attribute 120
style attribute 121

T
target attribute 123

indexed attribute 124
title attribute 125
Tivoli Information Center vi
Tivoli Integrated Portal 21
Tivoli technical training vi
training

Tivoli technical vi
type attribute 137
typeface conventions x

U
update_delay attribute 129
update_effect attribute 129
update_interval attribute 131
update_label attribute 131
update_option attribute 132
update_params attribute 133
update_policy attribute 134
update_postcall attribute 135
update_precall attribute 135
update_tags attribute and *_override_tags

attribute 136
url attribute 127

indexed attribute 128

V
var attribute 137
variables

notation for x

W
white space 28

154 Netcool/Impact: Operator View Guide

IBM®

Printed in USA

SC27-4853-01

	Contents
	Operator View Guide
	Intended audience
	Publications
	Netcool/Impact library
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support for problem solving
	Obtaining fixes
	Receiving weekly support updates
	Contacting IBM Software Support
	Determining the business impact
	Describing problems and gathering information
	Submitting problems

	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. Introduction to operator views
	Operator views
	Operator view types
	Basic operator views
	Advanced operator views
	Operator view components

	Setting up an operator view
	Managing an operator view
	Operator view process

	Chapter 2. Working with operator views
	Working with basic operator views
	Operator view name
	Layout options
	Action panel policies
	Information groups
	Creating a basic operator view
	Manually editing basic operator view components
	Editing the operator view policy
	Editing the operator view display page

	Viewing operator views
	Editing operator views
	Deleting operator views

	Working with advanced operator views
	Creating the operator view policy
	Handling incoming events
	Querying data sources
	Manipulating or normalizing data
	Overriding smart tag attributes

	Creating the display page
	Identifying the server cluster
	Identifying the operator view policy
	Specifying which data to display
	Specifying how data is displayed

	Customizing operator view displays index page
	Customizing the index page using CSS definitions
	Customizing the index page using .meta files
	Properties used in .meta files
	Customizing the index page using index URL
	Passing a cluster with the index page
	Passing an alternate stylesheet with the index page

	Viewing an operator view page in the Tivoli Integrated Portal
	Selecting the operator view URL
	Creating a custom operator view portlet
	Creating the custom operator view page

	Sending data from a charting table to an operator view

	Chapter 3. Working with smart tags
	Smart tags overview
	Smart tag syntax
	White space
	Escape characters
	Common attributes
	Overriding attributes
	Indexed attributes

	Chapter 4. Working with basic smart tags
	Property tag
	Event panel tag
	Action panel tag
	Information groups panel tag

	Chapter 5. Working with advanced smart tags
	Scalar tag
	List tag
	OrgNodes tag
	Attributes used in advanced smart tags
	action_align attribute
	action_class attribute
	action_count attribute
	action_disabled attribute
	action_fieldparams attribute
	action_hide attribute
	action_hiderow attribute
	action_isbutton attribute
	action_label attribute
	action_policy attribute
	action_style attribute
	action_target attribute
	action_url attribute
	action_varparams attribute
	aliases attribute
	autourl attribute
	cacheread attribute
	cachewrite attribute
	cellclass attribute
	cellstyle attribute used in list tag
	cellstyle attribute used in orgnodes tag
	class attribute
	default attribute
	delimiter attribute
	excludes attribute
	grouping attribute
	headerclass attribute
	headerstyle attribute
	id attribute
	includes attribute
	isbutton attribute
	label_align attribute
	label_class attribute
	label_show attribute
	label_style attribute
	label_text attribute
	orientation attribute used in list tag
	orientation attribute used in orgnodes tag
	params attribute
	policy attribute
	reversepair attribute
	rowcellclass attribute
	rowcellstyle attribute
	rowcelltext attribute
	rowclass attribute
	rowstyle attribute
	showheader attribute
	spaceheight attribute
	spacewidth attribute
	style attribute
	target attribute
	title attribute
	url attribute
	update_delay attribute
	update_effect attribute
	update_interval attribute
	update_label attribute
	update_option attribute
	update_params attribute
	update_policy attribute
	update_precall and update_postcall attributes
	update_tags and *_override_tags attribute
	var, type, and format attributes

	Appendix A. Accessibility
	Appendix B. Notices
	Trademarks

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	S
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

